
CS 383: Artificial Intelligence 
Markov Decision Processes

Prof. Scott Niekum, UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action has the intended effect 
(if there is no wall there)

▪ 20% of the time an adjacent action occurs instead. Ex: North
has 10% chance of East and 10% chance of West

▪ If there is a wall in the direction the agent would have been
taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

▪ An MDP is defined by:

▪ A set of states s ∈ S

▪ A set of actions a ∈ A

▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)

▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)

▪ Sometimes just R(s) or R(s’)

▪ A start state

▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems

▪ One way to solve them is with expectimax search

▪ …but with modification to allow rewards along the way

▪ We’ll have a new, more efficient tool soon

What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the future and
the past are independent

▪ For Markov decision processes, “Markov” means action outcomes
depend only on the current state

▪ This is just like search, where the successor function could only depend
on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

▪ In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

▪ For MDPs, we want an optimal policy π*: S → A

▪ A policy π gives an action for each state

▪ An optimal policy is one that maximizes expected

utility if followed

▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies

▪ It computed the action for a single state only

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing

▪ A robot car wants to travel far, quickly

▪ Three states: Cool, Warm, Overheated

▪ Two actions: Slow, Fast

▪ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees

▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Utilities of Sequences

Utilities of Sequences

▪ What preferences should an agent have over reward sequences?

▪ More or less?

▪ Now or later?

[1, 2, 2] [2, 3, 4] or

[0, 0, 1] [1, 0, 0] or

Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

▪ How to discount?

▪ Each time we descend a level, we

multiply in the discount once

▪ Why discount?

▪ Sooner rewards probably do have

higher utility than later rewards

▪ Also helps our algorithms converge

▪ Example: discount of 0.5

▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

▪ U([1,2,3]) < U([3,2,1])

Stationary Preferences

▪ Theorem: if we assume stationary preferences:

▪ Then: there are only two ways to define utilities

▪ Additive utility:

▪ Discounted utility:

Quiz: Discounting

▪ Given:

▪ Actions: Left, Right, and Exit (only available in exit states a, e)

▪ Transitions: deterministic

▪ Quiz 1: For γ = 1, what is the optimal policy?

▪ Quiz 2: For γ = 0.1, what is the optimal policy?

▪ Quiz 3: For which γ are Left and Right equally good when in state d?

10 g^3 = 1 g g = sqrt(1/10)

A: 1/10

B: 1/1000

C: sqrt(1/10)

D: sqrt(10)

iClicker:

Infinite Utilities?!

▪ Problem: What if the game lasts forever? Do we get infinite rewards?

▪ Solutions:

▪ Finite horizon: (similar to depth-limited search)

▪ Terminate episodes after a fixed T steps (e.g. life)

▪ Gives nonstationary policies (π depends on time left)

▪ Discounting: use 0 < γ < 1

▪ Smaller γ means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

Recap: Defining MDPs

▪ Markov decision processes:

▪ Set of states S

▪ Start state s0

▪ Set of actions A

▪ Transitions P(s’|s,a) (or T(s,a,s’))

▪ Rewards R(s,a,s’) (and discount γ)

▪ MDP quantities so far:

▪ Policy = Choice of action for each state

▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Solving MDPs

Optimal Quantities

▪ The value (utility) of a state s:

V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:

π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a  
transition

s,a,s’

s is a
state

(s, a) is a q-
state

Gridworld V Values

Noise = 0

Discount = 1

Living reward = 0

Gridworld Q Values

Noise = 0

Discount = 1

Living reward = 0

Gridworld V Values

Noise = 0.2

Discount = 1

Living reward = 0

Gridworld Q Values

Noise = 0.2

Discount = 1

Living reward = 0

Gridworld V Values

Noise = 0.2

Discount = 0.9

Living reward = 0

Gridworld Q Values

Noise = 0.2

Discount = 0.9

Living reward = 0

Values of States

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of (optimal) value:

a

s

s, a

s,a,s’
s’

Racing Search Tree

Racing Search Tree

Racing Search Tree

▪ We’re doing way too much work
with expectimax!

▪ Problem: States are repeated

▪ Idea: Only compute needed

quantities once

▪ Problem: Tree goes on forever

▪ Idea: Do a depth-limited

computation, but with increasing
depths until change is small

▪ Note: deep parts of the tree
eventually don’t matter if γ < 1

Time-Limited Values

▪ Key idea: time-limited values

▪ Define Vk(s) to be the optimal value of s if the game ends in
k more time steps

▪ Equivalently, it’s what a depth-k expectimax would give from s

k=0

Noise = 0.2

Discount = 0.9

Living reward = 0

k=1

Noise = 0.2

Discount = 0.9

Living reward = 0

k=2

Noise = 0.2

Discount = 0.9

Living reward = 0

k=3

Noise = 0.2

Discount = 0.9

Living reward = 0

k=4

Noise = 0.2

Discount = 0.9

Living reward = 0

k=5

Noise = 0.2

Discount = 0.9

Living reward = 0

k=6

Noise = 0.2

Discount = 0.9

Living reward = 0

k=7

Noise = 0.2

Discount = 0.9

Living reward = 0

k=8

Noise = 0.2

Discount = 0.9

Living reward = 0

k=9

Noise = 0.2

Discount = 0.9

Living reward = 0

k=10

Noise = 0.2

Discount = 0.9

Living reward = 0

k=11

Noise = 0.2

Discount = 0.9

Living reward = 0

k=12

Noise = 0.2

Discount = 0.9

Living reward = 0

k=100

Noise = 0.2

Discount = 0.9

Living reward = 0

Computing Time-Limited Values

Value Iteration

Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one step of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values

▪ Basic idea: approximations get refined towards optimal values

▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

 0 0 0

 2 1 0

 3.5 2.5 0

Assume no discount!

Q2(cool, slow) = 1.0(1 + 2) = 3
<latexit sha1_base64="YNerfKoRE2KM7Zws7/KJz3vDzWk=">AAACCHicbZDLSsNAFIYn9VbrLerShYNFqCglSQXdCEU3LluwF2hDmEyn7dBJJsxMlBK6dOOruHGhiFsfwZ1v46TNQlt/GPj4zzmcOb8fMSqVZX0buaXlldW1/HphY3Nre8fc3WtKHgtMGpgzLto+koTRkDQUVYy0I0FQ4DPS8kc3ab11T4SkPLxT44i4ARqEtE8xUtryzMO655Qw5+wMSsYfTuAVtMsWLNmnTsoVzyxaZWsquAh2BkWQqeaZX90ex3FAQoUZkrJjW5FyEyQUxYxMCt1YkgjhERqQjsYQBUS6yfSQCTzWTg/2udAvVHDq/p5IUCDlOPB1Z4DUUM7XUvO/WidW/Us3oWEUKxLi2aJ+zKDiME0F9qggWLGxBoQF1X+FeIgEwkpnV9Ah2PMnL0LTKduVslM/L1avszjy4AAcgRKwwQWogltQAw2AwSN4Bq/gzXgyXox342PWmjOymX3wR8bnDygFlZE=</latexit>

Q2(cool, fast) = 0.5(2 + 2) + 0.5(2 + 1) = 3.5
<latexit sha1_base64="TWRvJp+xzfRq+fv0eqbiuYdjbCM=">AAACFHicbZDLSsNAFIYn9VbrLerSzWARWiohSS26EYpuXLZgL9CWMplO2qGTTJiZCCX0Idz4Km5cKOLWhTvfxmmbhbb+MPDxn3M4c34vYlQq2/42MmvrG5tb2e3czu7e/oF5eNSUPBaYNDBnXLQ9JAmjIWkoqhhpR4KgwGOk5Y1vZ/XWAxGS8vBeTSLSC9AwpD7FSGmrb5bqfbeAOWfn0EdSFeE1tK1KwS25RVhK0Zm5ZavSN/O2Zc8FV8FJIQ9S1frmV3fAcRyQUGGGpOw4dqR6CRKKYkamuW4sSYTwGA1JR2OIAiJ7yfyoKTzTzgD6XOgXKjh3f08kKJByEni6M0BqJJdrM/O/WidW/lUvoWEUKxLixSI/ZlBxOEsIDqggWLGJBoQF1X+FeIQEwkrnmNMhOMsnr0LTtZyy5dYv8tWbNI4sOAGnoAAccAmq4A7UQANg8AiewSt4M56MF+Pd+Fi0Zox05hj8kfH5A2pOmBc=</latexit>

V2(cool) = max(3, 3.5) = 3.5
<latexit sha1_base64="ysdosB25Avn2MYva17xLkWNIibI=">AAACBnicbVBNS8MwGE7n15xfVY8iBIcwQUq7KXoRhl48TnAfsJWSZukWljYlScVRdvLiX/HiQRGv/gZv/hvTrQedPhDy5Hnelzfv48eMSmXbX0ZhYXFpeaW4Wlpb39jcMrd3WpInApMm5oyLjo8kYTQiTUUVI51YEBT6jLT90VXmt++IkJRHt2ocEzdEg4gGFCOlJc/cb3nVCuacHcELGKL7Su0Y1qzT7KUvzyzblj0F/EucnJRBjoZnfvb6HCchiRRmSMquY8fKTZFQFDMyKfUSSWKER2hAuppGKCTSTadrTOChVvow4EKfSMGp+rMjRaGU49DXlSFSQznvZeJ/XjdRwbmb0ihOFInwbFCQMKg4zDKBfSoIVmysCcKC6r9CPEQCYaWTK+kQnPmV/5JW1XJqVvXmpFy/zOMogj1wACrAAWegDq5BAzQBBg/gCbyAV+PReDbejPdZacHIe3bBLxgf3/awlPI=</latexit>

