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Uncertain Outcomes




Worst-Case vs. Average Case
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ldea: Uncertain outcomes controlled by chance, not an adversary!



Expectimax Search

Why wouldn’t we know what the result of an action will be?
= Explicit randomness: rolling dice max
= Unpredictable opponents: the ghosts respond randomly
= Actions can fail: when moving a robot, wheels might slip

Values should now reflect weighted (expectimax) outcomes, chance
not worst-case (minimax) outcomes

Expectimax search: compute the average score under optimal

play . 10] [10 9| [00
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s Chance nodes are like min nodes but the outcome is uncertain
= Calculate their expected utilities
= |.e. take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes



Minimax vs Expectimax (Min)

SCORE: 0

End your misery!



Minimax vs Expectimax (Exp)

SCORE: 0

Hold on to hope, Pacman!



Reminder: Probabilities

A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Outcomes: T in {none, light, heavy}
= Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Some laws of probability (more later):
= Probabilities are always non-negative
= Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
= P(T=heavy) =0.25, P(T=heavy | Hour=8am) = 0.60
= We'll talk about methods for reasoning and updating probabilities later
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Reminder: Expectations

= The expected value of a function of a random variable is the
average, weighted by the probability distribution over outcomes

= Example: How long to get to the airport?

Time: 20 min 30 min 60 min
X + X + X 35 min
Probability: 0.25 0.50 0.25

-_—

< ~_
i ~—
ID)




Expectimax Pseudocode

-

def value(state): A
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state) Py

(a

ef max-value(state):
initialize v = -0
for each successor of state:
v = max(v, value(successor))
return v
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/def exp-value(state):
initializev="0
for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v




Expectimax Pseudocode

Gef exp-value(state):
initializev=_0

\ return v

~

for each successor of state:
p = probability(successor)
v += p * value(successor)

1/2

/

1/3

24

v=(1/2)(8)+(1/3) (24) + (1/6) (-12) = 10

1/6

-12




Expectimax Example

What is the value of IClicker:
the root node?

A: 3
B:6
C.8
D: 15

12 9 2 4 6 15 3 0
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Expectimax Pruning?




Depth-Limited Expectimax
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Estimate of true \
400! 1300 expectimax value

v, (which would
require a lot of
work to compute))

492 362




What Probabilities to Use?

= |In expectimax search, we have a probabilistic model c
how the opponent (or environment) will behave in any

state
= Model could be a simple uniform distribution (roll a die)
= Model could be sophisticated and require a great deal of
computation
= We have a chance node for any outcome out of our control:
opponent or environment

= The model might say that adversarial actions are likely!

= For now, assume each chance node magically comes
along with probabilities that specify the distribution

over its outcomes
Having a probabilistic belief about
another agent’s action does not mean

that the agent is flipping any coins!



What are Probabilities?

» Obijectivist / frequentist answer:
= Averages over repeated experiments
= E.g. empirically estimating P(rain) from historical observation
= Assertion about how future experiments will go (in the limit)
= Makes one think of inherently random events, like rolling dice

= Subjectivist / Bayesian answer:
= Degrees of belief about unobserved variables
= E.g. an agent’s belief that it’s raining, given the temperature
= E.g. pacman’s belief that the ghost will turn left, given the state
= Often learn probabilities from past experiences (more later)
= New evidence updates beliefs (more later)



Modeling Assumptions




The Dangers of Optimism and Pessimism

Dangerous Optimism Dangerous Pessimism
Assuming chance when the world is adversarial Assuming the worst case when it’s not likely




Assumptions vs. Reality

Adversarial Ghost Random Ghost
e Won 5/5 Won 5/5
Pacman Avg. Score: 483 Avg. Score: 493
Expectimax Won 1/5 Won 5/5
Pacman Avg. Score: -303 Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman



Video of Demo World Assumptions
Random Ghost — Expectimax Pacman




Video of Demo World Assumptions
Random Ghost — Minimax Pacman




Video of Demo World Assumptions
Adversarial Ghost — Minimax Pacman




Video of Demo World Assumptions
Adversarial Ghost — Expectimax Pacman




Other Game Types




Mixed Layer Types

= E.g. Backgammon
s Expectiminimax

= Environmentis an
extra “random
agent” player that
moves after each
min/max agent

= Each node
computes the
appropriate
combination of its
children




Multi-Agent Utilities

= What if the game is not zero-sum, or has multiple players?

= Generalization of minimax:
= Terminals have utility tuples
= Node values are also utility tuples

= Each player maximizes its own component
= Can give rise to cooperation and
competition dynamically...

y < y y
1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5




Utilities




Maximum Expected Utility

= Why should we average utilities? Why not minimax?

= Principle of maximum expected utility:

= A rational agent should chose the action that maximizes its expected
utility, given its knowledge

s Questions:

= Where do utilities come from?

= How do we know such utilities even exist that represent our preferences?
= How do we know that averaging even makes sense?

= What if our behavior (preferences) can’t be described by utilities?



What Utilities to Use?
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= For worst-case minimax reasoning, terminal function scale doesn’t matter
= We just want better states to have higher evaluations (get the ordering right)
= We call this insensitivity to monotonic transformations

= For average-case expectimax reasoning, we need magnitudes to be meaningful



Util

Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

Where do utilities come from?
= In a game, may be simple (+1/-1)
= Utilities summarize the agent’s goals

= Theorem: any “rational” preferences can be
summarized as a utility function

We hard-wire utilities and let behaviors
emerge

= Why don’t we let agents pick utilities?

= Why don’t we prescribe behaviors?

Ities

=




Utilities: Uncertain Outcomes

Getting ice cream
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Get Slngle Get Double
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Preferences

A Prize A Lottery
= An agent must have preferences among: e R
» Prizes: A, B, etc.
» Lotteries: situations with uncertain prizes p 1-p
1. ) 4
L=1[p,4; (1-p),B] y 5
N _/
= Notation:
= Preference: A > D

= Indifference: A~ B



Rationality




Rational Preferences

= We want some constraints on preferences before we call them rational, such as:

[Axiom of Transitivity: (A= B)A(B>=C)= (4~ C)]

= For example: an agent with intransitive preferences can
be induced to give away all of its money
= If B>C, then an agent with C would pay (say) 1 cent to get B
= If A> B, then an agent with B would pay (say) 1 cent to get A
= If C> A, then an agent with A would pay (say) 1 cent to get C




Rational Preferences

The Axioms of Rationality

( Orderability )

(A-BYV(B>A)v(A~DB)
Transitivity

(A>B)AN(B»C)=(A>C)
Continuity

A=B>C=3dp[p. A, 1 —p,C]l~ B
Substitutability

A~ B = [p, A, 1 —p, (_i‘] ~ [;'"'.- ;1 —p, (',']
Monotonicity

A- B =

\_ (p>ge[p.A; 1—p.Bl=[g, 4, 1—q. RIZ'J/

Theorem: Rational preferences imply behavior describable as maximization of expected utility



MEU Principle

= Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

= Given any preferences satisfying these constraints, there exists a real-valued
function U such that:

U(A) > U(B) < A B
U(lp1, 51 -+ 1 Pn,Sn]) = 2 piU(S;)

= |.e.values assigned by U preserve preferences of both prizes and lotteries!

= Maximum expected utility (MEU) principle:
= Choose the action that maximizes expected utility

= Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities
and probabilities

= E.g., alookup table for perfect tic-tac-toe, a reflex vacuum cleaner



Human Utilities

SPIN THE WHEEL
OR
PAY $ T PASS




Human Utilities

= Utilities map states to real numbers. Which numbers?
» Standard approach to assessment (elicitation) of human utilities:
= Compare a prize A to a standard lottery L, between

« “best possible prize” u, with probability p

-~ 3n

= “worst possible catastrophe” u_ with probability 1-p
= Adjust lottery probability p until indifference: A~ L,
= Resulting p is a utility in [0,1]

4 )
[ Pay S30 ] ~ 0.999999 000001
No pay Instant death

- J




Money

= Money does not behave as a utility function, but we can talk about the
utility of having money (or being in debt)

= Given a lottery L = [p, SX; (1-p), SY]
= The expected monetary value EMV(L) is p*X + (1-p)*Y
= U(L) = p*U(SX) + (1-p)*U(SY)
= Typically, U(L) < U(EMV(L) )
= In this sense, people are risk-averse

= When deep in debt, people are risk-prone

+U
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Example: Insurance

« Consider the lottery [0.5, S1000; 0.5, SO]

= What is its expected monetary value? ($500)
= What is its certainty equivalent?

= Monetary value acceptable in lieu of lottery

= $400 for most people
= Difference of $100 is the insurance premium

= There’s an insurance industry because people will
pay to reduce their risk

= If everyone were risk-neutral, no insurance
needed!

= It’s win-win: you’d rather have the $400 and the
insurance company would rather have the
lottery (their utility curve is flat and they have
many lotteries)




Example: Human Rationality?

s Famous example of Allais (1953)

= A:[0.8, S4k; 0.2, SO]
« B:[1.0,S3k; 0.0, SO

« C:[0.2,S4k; 0.8, SO]
« D:[0.25,S3k; 0.75, SO]

= Most people preferB>A,C>D

= Butif U(SO) =0, then
« B>A= U(S3k) > 0.8 U(S54k)
s C>D = 0.8 U(S4k) > U(S3k) (mult both sides by 4 — linear transforms are OK)

IClicker:
A: A>B, C>D

B: A>B, D>C
C:B>A, C>D

D: B>A, D>C



