CS 383: Artificial Intelligence

CSPs II + Local Search

Prof. Scott Niekum
UMass Amherst

Last time: CSPs

- CSPs:
- Variables
- Domains
- Constraints
- Implicit (provide code to compute)

- Explicit (provide a list of the legal tuples)
- Unary / Binary / N-ary
- Goals:
- Here: find any solution
- Also: find all, find best, etc.

Last time: Backtracking

Last time: Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Limitations of Arc Consistency

- After enforcing arc consistency:
- Can have one solution left
- Can have multiple solutions left

- Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!

What went wrong here?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- ... but it's all still NP-hard
- Filtering: Can we detect inevitable failure early?

- Ordering:
- Which variable should be assigned next? (MRV)
- In what order should its values be tried? (LCV)
- Structure: Can we exploit the problem structure?

Structure

Problem Structure

- Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact
- Independent subproblem are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:

- Worst-case solution cost is $\mathrm{O}((\mathrm{n} / \mathrm{c})(\mathrm{dc}))$, linear in n
- E.g., $n=80, d=2, c=20$
- $280=4$ billion years at 10 million nodes $/ \mathrm{sec}$
- $(4)\left(2^{20}\right)=0.4$ seconds at 10 million nodes $/ \mathrm{sec}$

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time - Compare to general CSPs, where worst-case time is O(dn)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:

- Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$
- Assign forward: For $\mathrm{i}=1$: n , assign X_{i} consistently with Parent $\left(\mathrm{X}_{\mathrm{i}}\right)$
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \rightarrow Y$ was made consistent at one point and Y 's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Nearly Tree-Structured CSPs

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O\left((d c)(n-c) d^{2}\right)$, very fast for small c

Cutset Conditioning

Solve the residual CSPs (tree structured), removing any inconsistent domain values w.r.t. cutset assignment

Cutset Quiz

- Find the smallest cutset for the graph below.

iClicker:
A: A, B
B: A
C: B
D: A, B, M

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
- Take an assignment with unsatisfied constraints
- Operators reassign variable values
- No fringe! Live on the edge.

- Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
- Choose a value that violates the fewest constraints
- I.e., hill climb with $h(n)=$ total number of violated constraints
- Can get stuck in local minima (we'll come back to this idea in a few slides)

Example: 4-Queens

- States: 4 queens in 4 columns $\left(4^{4}=256\right.$ states $)$
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

Video of Demo Iterative Improvement - n Queens

Performance of Min-Conflicts

- Runtime of min-conflicts is on n-queens is roughly independent of problem size!
- Why?? Solutions are densely distributed in state space
- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$) in ~ 50 steps!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Summary: CSPs

- CSPs are a special kind of search problem:
- States are partial assignments
- Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
- Ordering
- Filtering
- Structure

- Iterative min-conflicts is often effective in practice

Local Search

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes

- Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- Simple, general idea:
- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit
- What's bad about this approach?
- Complete?
- Optimal?
- What's good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from Z, where do you end up ?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
- But make them rarer as time goes on
function SimuliATrII)-ANNFAIING(problem, schedule) returns a solution state inputs: problem, a problem
schedule, a mapping from time to "temperature"
local variables: currenl, a node
next, a node
T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node (Initial-State[problemf])
for $t \leftarrow 1$ to ∞ do
$T \leftarrow$ schedule $[t]$
if $T=0$ then return current
nexal \leftarrow a randomly selected successor of curvent
$\Delta E \leftarrow$ Value [next] - Value [current] if $\Delta F>0$ then curgenl \leftarrow nexl
else current \leftarrow next only with probability $e^{\Delta E / T}$

Simulated Annealing

- Theoretical guarantee:
- If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row

Beam Search

- Like greedy hillclimbing search, but keep K states at all times:

Greedy Search

Beam Search

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?

Gradient Methods

- Continuous state spaces
- Problem! Cannot select optimal successor
- Discretization or random sampling

$$
\begin{gathered}
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial y_{2}}, \frac{\partial f}{\partial x_{3}}, \frac{\partial f}{\partial y_{3}}\right) \\
x \leftarrow x+\alpha \nabla f(x)
\end{gathered}
$$

- Choose from a finite number of choices
- Continuous optimization: Gradient ascent
- Take a step along the gradient (vector of partial derivatives)
- What if you can't compute gradient?
- i.e. maybe you can only sample the function
- Estimate gradient from samples!
- "Stochastic gradient descent"
- We will return to this in neural networks / deep learning

Genetic Algorithms

Fitness

- Genetic algorithms use a natural selection metaphor

- Keep best N hypotheses at each step (selection) based on a fitness function
- Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

