### CS 383: Artificial Intelligence

CSPs II + Local Search

Prof. Scott Niekum

**UMass Amherst** 



[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

#### Last time: CSPs

- CSPs:
  - Variables
  - Domains
  - Constraints
    - Implicit (provide code to compute)
    - Explicit (provide a list of the legal tuples)
    - Unary / Binary / N-ary

#### Goals:

- Here: find any solution
- Also: find all, find best, etc.





#### Last time: Backtracking



# Last time: Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:



Important: If X loses a value, neighbors of X need to be rechecked!

- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

# Limitations of Arc Consistency

#### After enforcing arc consistency:

- Can have one solution left
- Can have multiple solutions left
- Can have no solutions left (and not know it)

 Arc consistency still runs inside a backtracking search!





What went wrong here?

# **Improving Backtracking**

- General-purpose ideas give huge gains in speed
  - ... but it's all still NP-hard
- Filtering: Can we detect inevitable failure early?
- Ordering:
  - Which variable should be assigned next? (MRV)
  - In what order should its values be tried? (LCV)
- Structure: Can we exploit the problem structure?





#### Structure



# **Problem Structure**

- Extreme case: independent subproblems
  - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
  - Worst-case solution cost is O((n/c)(d<sup>c</sup>)), linear in n
  - E.g., n = 80, d = 2, c = 20
  - 2<sup>80</sup> = 4 billion years at 10 million nodes/sec
  - (4)(2<sup>20</sup>) = 0.4 seconds at 10 million nodes/sec



#### Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d<sup>2</sup>) time
  - Compare to general CSPs, where worst-case time is O(d<sup>n</sup>)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

#### **Tree-Structured CSPs**

- Algorithm for tree-structured CSPs:
  - Order: Choose a root variable, order variables so that parents precede children



- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X<sub>i</sub>),X<sub>i</sub>)
- Assign forward: For i = 1 : n, assign X<sub>i</sub> consistently with Parent(X<sub>i</sub>)
- Runtime: O(n d<sup>2</sup>) (why?)

# **Tree-Structured CSPs**

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)



- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
  Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

#### Nearly Tree-Structured CSPs



#### Nearly Tree-Structured CSPs



- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O( (d<sup>c</sup>) (n-c) d<sup>2</sup> ), very fast for small c

# **Cutset Conditioning**



#### **Cutset Quiz**

Find the smallest cutset for the graph below.



| <u>iClicker:</u> |
|------------------|
| A: A, B          |
| B: A             |
| C: B             |
| D: A, B, M       |

#### **Iterative Improvement**



# Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
  - Take an assignment with unsatisfied constraints
  - Operators *reassign* variable values
  - No fringe! Live on the edge.
- Algorithm: While not solved,
  - Variable selection: randomly select any conflicted variable
  - Value selection: min-conflicts heuristic:
    - Choose a value that violates the fewest constraints
    - I.e., hill climb with h(n) = total number of violated constraints
- Can get stuck in local minima (we'll come back to this idea in a few slides)



#### Example: 4-Queens



- States: 4 queens in 4 columns (4<sup>4</sup> = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

#### Video of Demo Iterative Improvement – n Queens



# Performance of Min-Conflicts

- Runtime of min-conflicts is on n-queens is roughly independent of problem size!
  - Why?? Solutions are densely distributed in state space
- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000) in ~50 steps!
- The same appears to be true for any randomly-generated CSP *except* in a narrow range of the ratio





# Summary: CSPs

- CSPs are a special kind of search problem:
  - States are partial assignments
  - Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
  - Ordering
  - Filtering
  - Structure

Th w M  $\mathbf{a}$ 09 0.

F

Iterative min-conflicts is often effective in practice

### Local Search



#### Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes



Generally much faster and more memory efficient (but incomplete and suboptimal)

# Hill Climbing

#### Simple, general idea:

- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit
- What's bad about this approach?
  - Complete?
  - Optimal?
- What's good about it?



# Hill Climbing Diagram



# Hill Climbing Quiz



Starting from Z, where do you end up ?

# **Simulated Annealing**

Shake!

Shake!

- Idea: Escape local maxima by allowing downhill moves
  - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
  inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow MAKE-NODE(INITIAL-STATE[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

# **Simulated Annealing**

#### Theoretical guarantee:

- If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?

#### Sounds like magic, but reality is reality:

 The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row



#### Beam Search

 Like greedy hillclimbing search, but keep K states at all times:







Beam Search

- Variables: beam size, encourage diversity?
- The best choice in MANY practical settings
- Complete? Optimal?
- Why do we still need optimal methods?

# Gradient Methods

- Continuous state spaces
  - Problem! Cannot select optimal successor
- Discretization or random sampling
  - Choose from a finite number of choices
- Continuous optimization: Gradient ascent
  - Take a step along the gradient (vector of partial derivatives)
- What if you can't compute gradient?
  - i.e. maybe you can only sample the function
  - Estimate gradient from samples!
  - "Stochastic gradient descent"
  - We will return to this in neural networks / deep learning

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)$$

$$x \leftarrow x + \alpha \nabla f(x)$$



# **Genetic Algorithms**



#### Fitness



- Genetic algorithms use a natural selection metaphor
  - Keep best N hypotheses at each step (selection) based on a fitness function
  - Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

#### Example: N-Queens



- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?