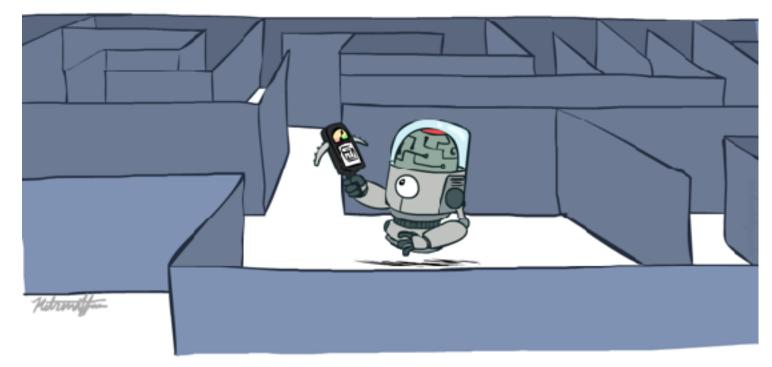
CS 383: Artificial Intelligence

Informed Search



Prof. Scott Niekum

UMass Amherst

[These slides based on ones created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

Informed Search

- Heuristics
- Greedy Search
- A* Search

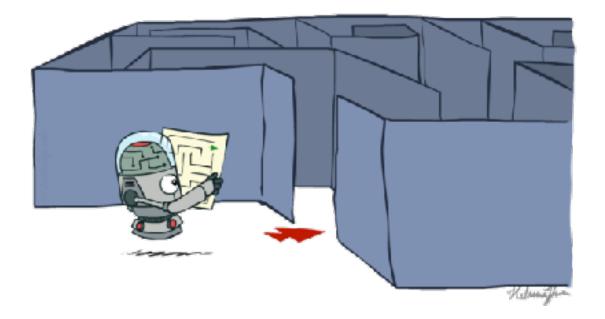
Graph Search

Recap: Search

- Search problem:
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test

Search tree:

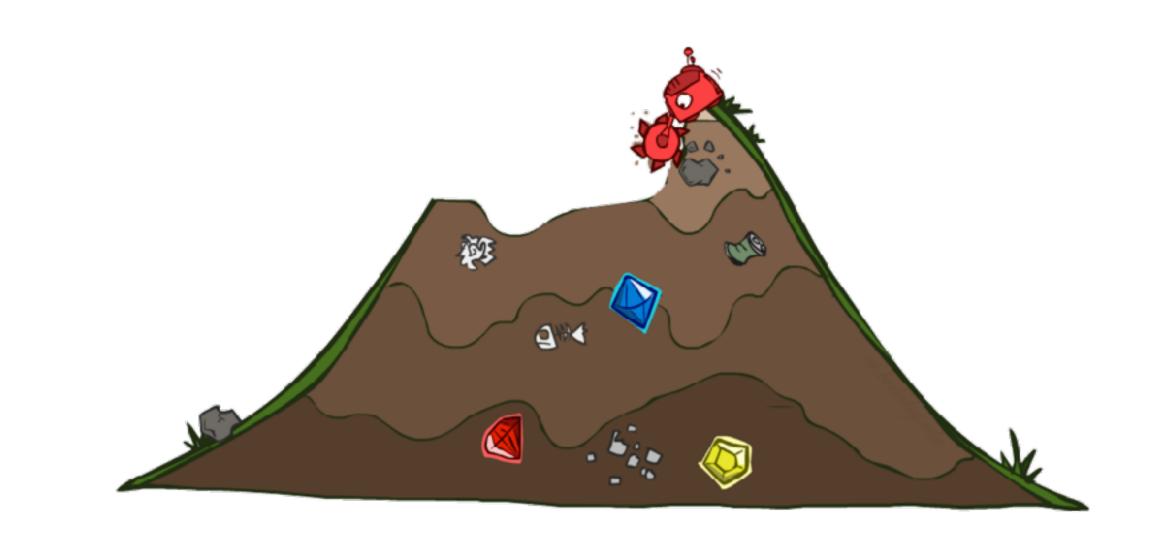
- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)
- Search algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans



The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Uninformed Search

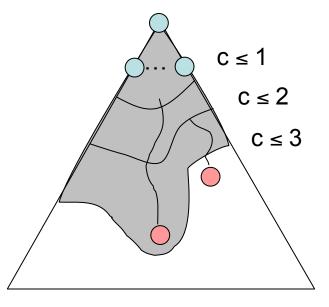


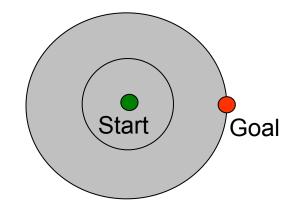
Uniform Cost Search

Strategy: expand lowest path cost

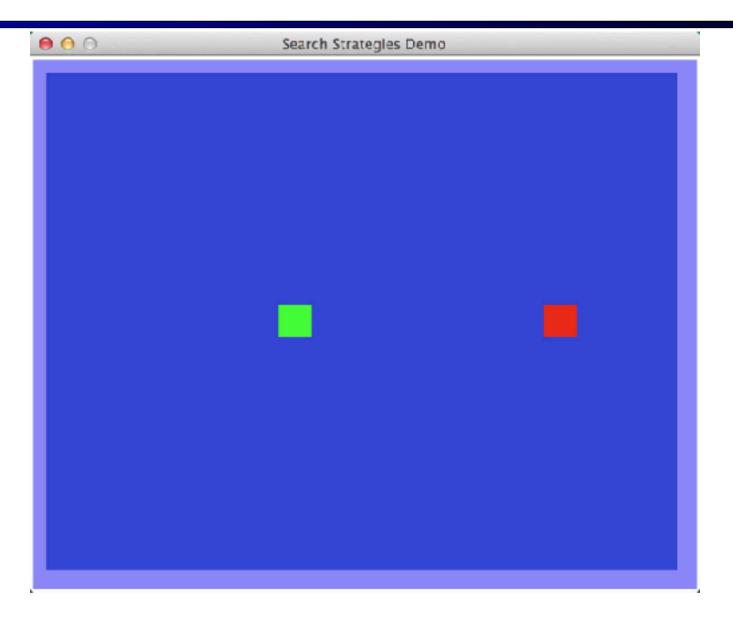
The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

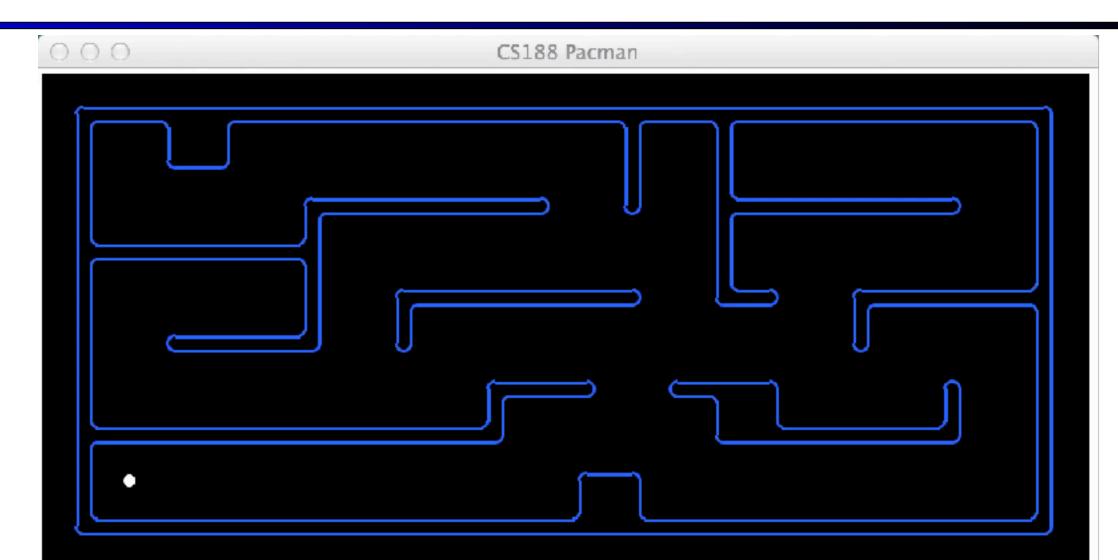




Video of Demo Contours UCS Empty

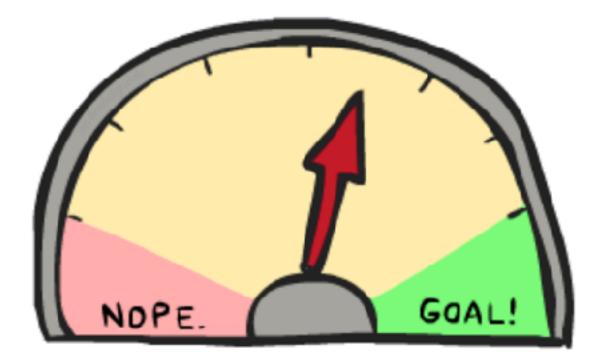


Video of Demo Contours UCS Pacman Small Maze



SCORE: 0

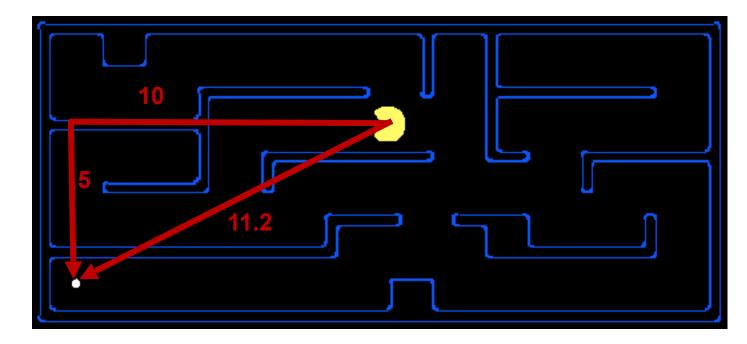
Informed Search

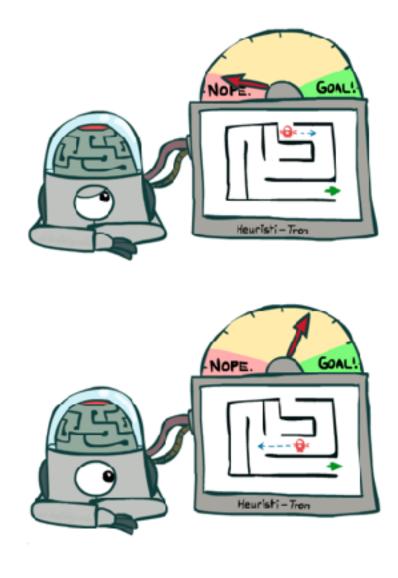


Search Heuristics

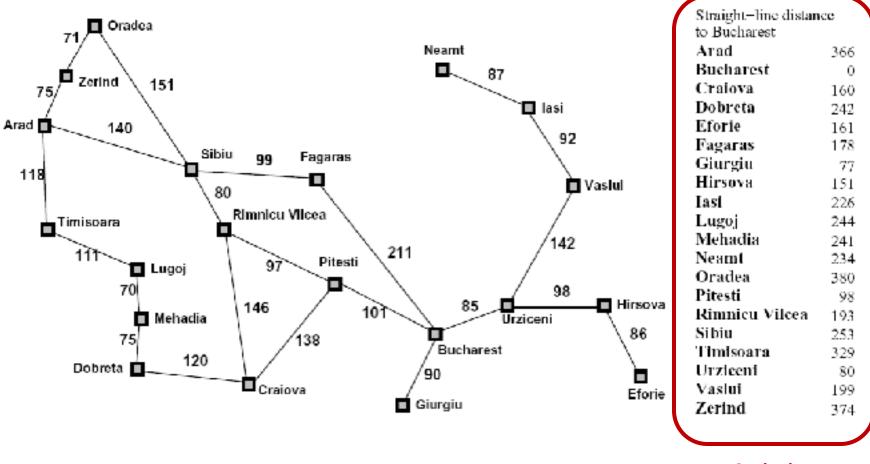
A heuristic is:

- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing





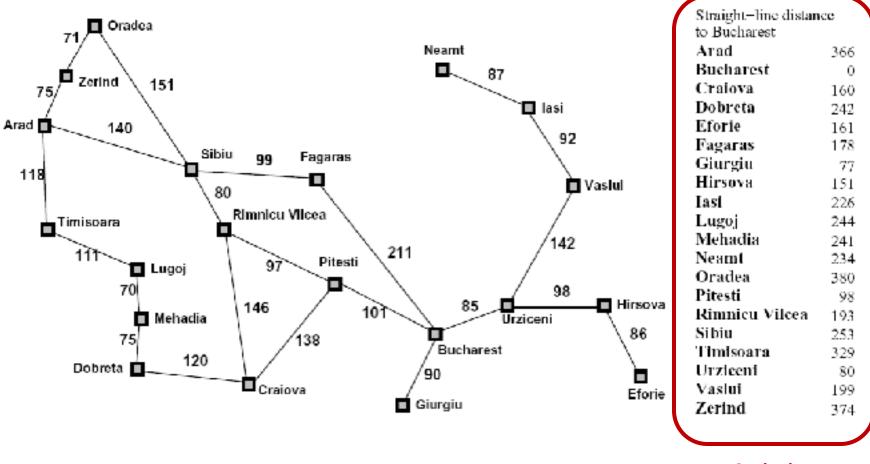
Example: Heuristic Function



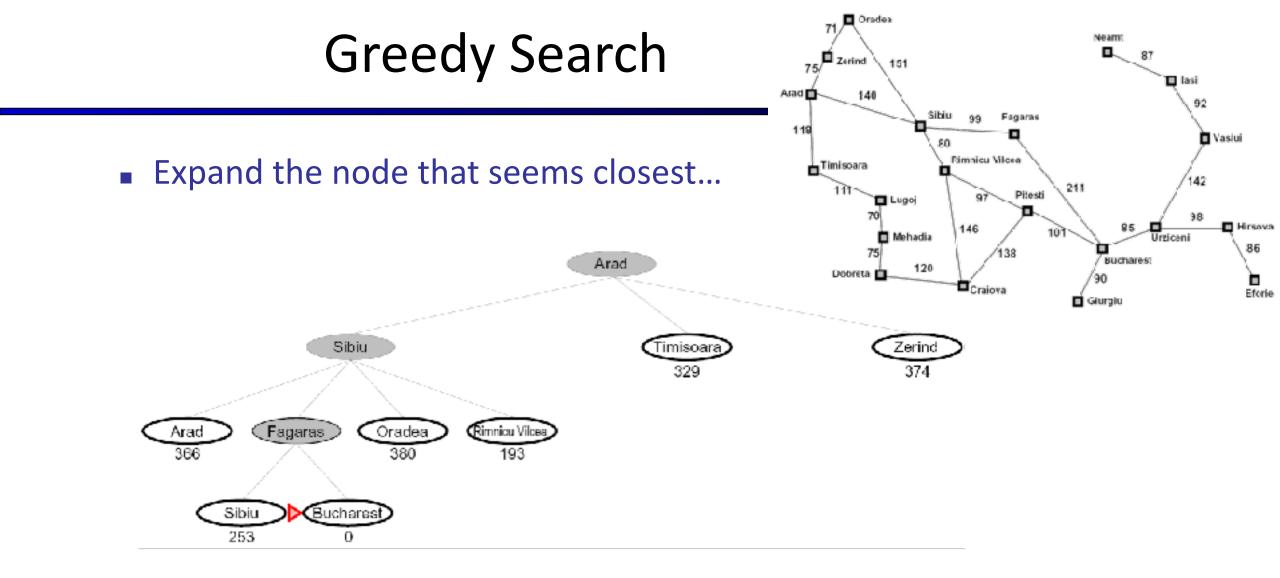
h(x)

Greedy Search

Example: Heuristic Function



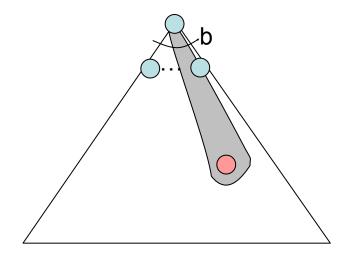
h(x)

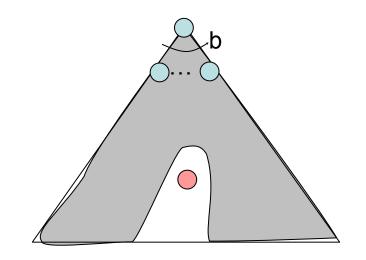


What can go wrong?

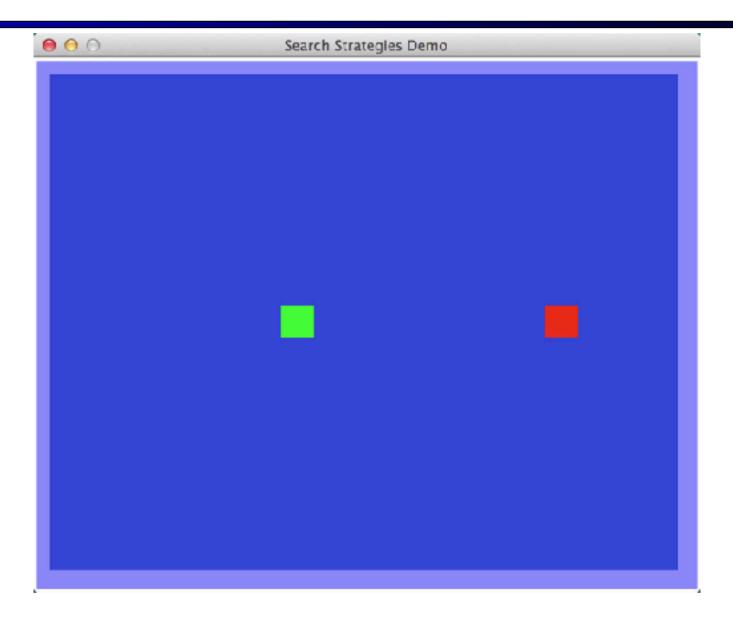
Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- Best case:
 - Best-first takes you straight to the nearest goal
- Common cases:
 - Suboptimal route to goal due to imperfect heuristic
 - Doesn't consider cost to get to next state, only h(x)!
- Worst-case: like a badly-guided DFS

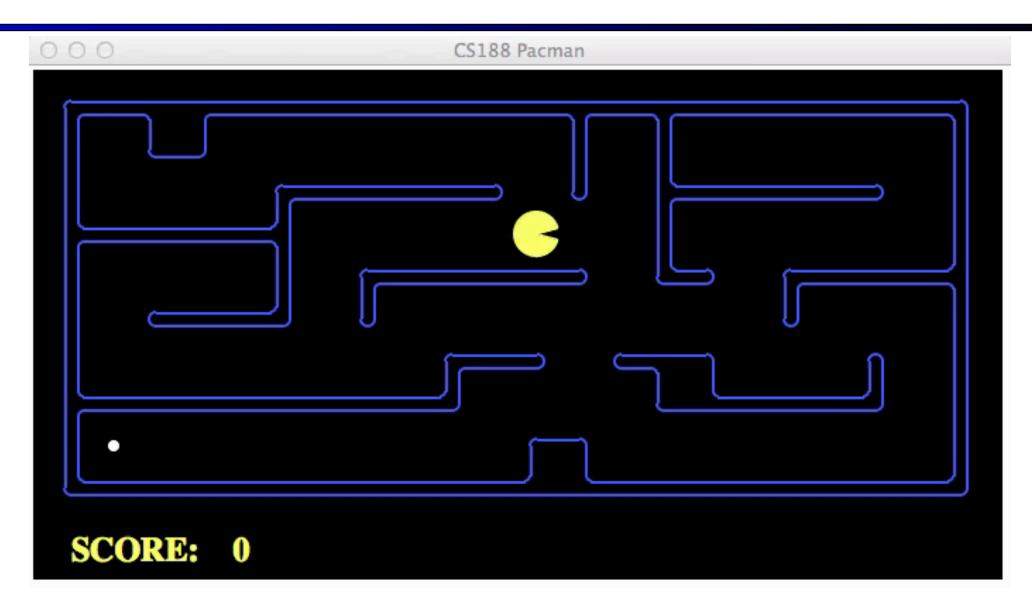




Video of Demo Contours Greedy (Empty)



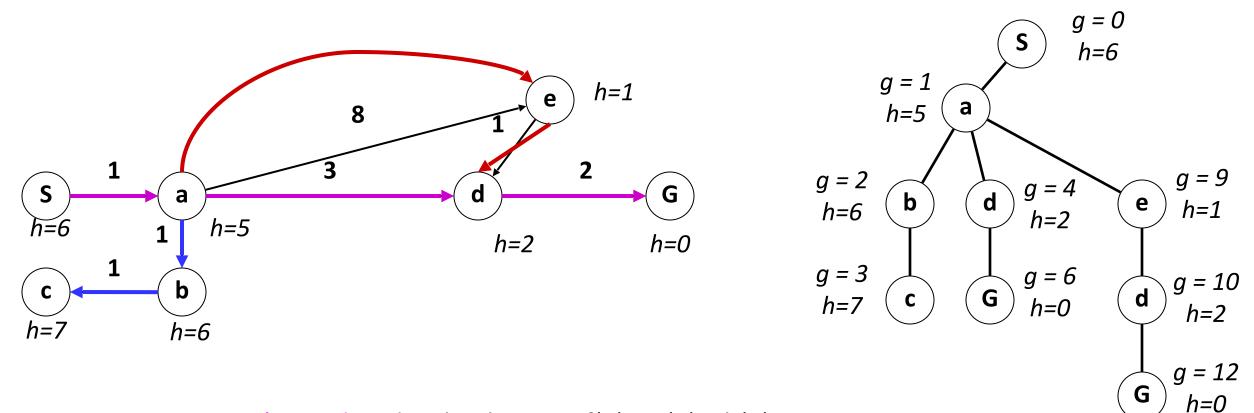
Video of Demo Contours Greedy (Pacman Small Maze)



A* Search

Combining UCS and Greedy

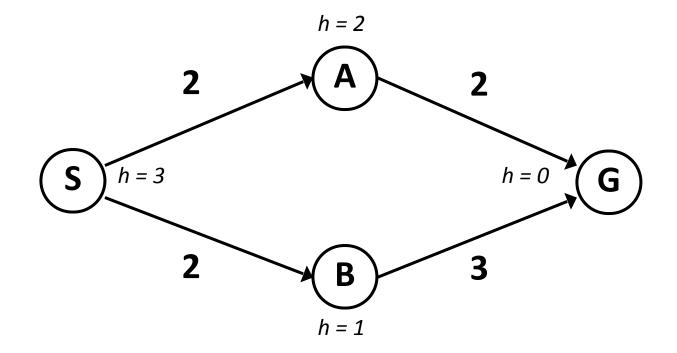
- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)



A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

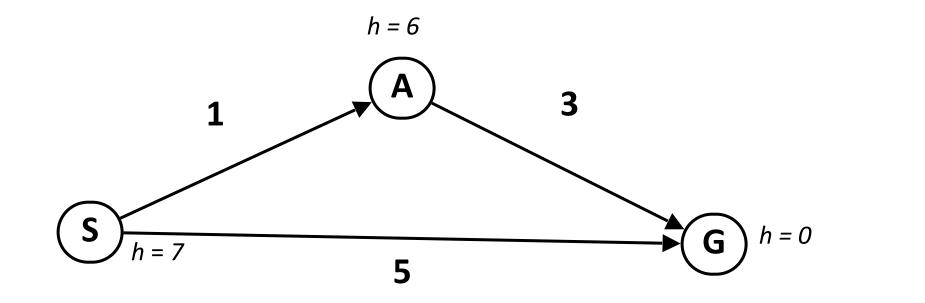
Should we stop when we enqueue a goal?



<u>iClicker:</u> A: Yes B: No

No: only stop when we expand a goal

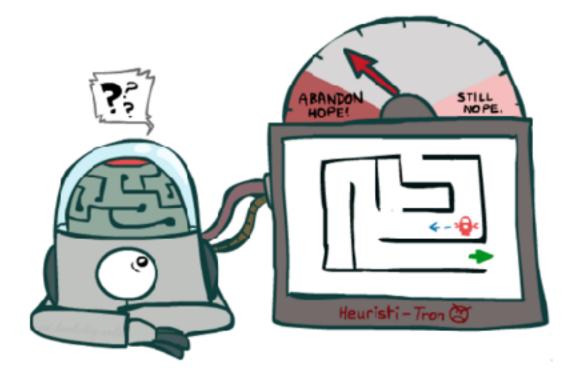
Is A* Optimal in this case?



<u>iClicker:</u> A: Yes B: No

- What will A* do here?
- What went wrong?
- Actual bad goal cost < estimated good goal cost</p>
- We need estimates to be less than actual costs!

Idea: Admissibility



VAY! VAY!

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe Admissible (optimistic) heuristics can still help to delay the evaluation of bad plans, but never overestimate the true costs

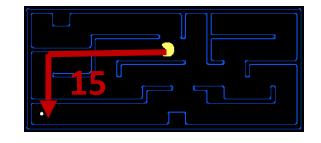
Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

 $0 \leq h(n) \leq h^*(n)$

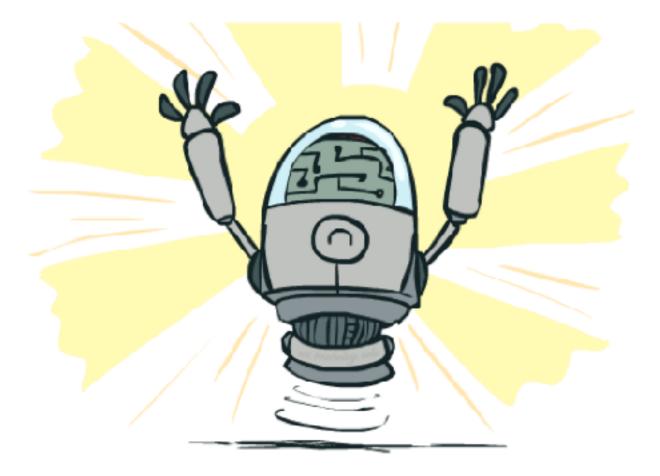
where $h^*(n)$ is the true cost to a nearest goal

Example:



 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search



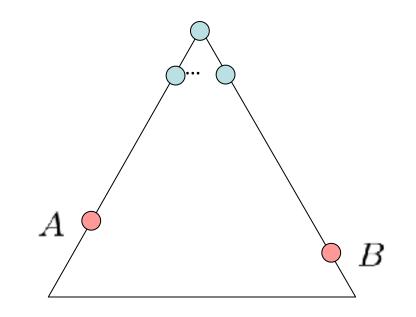
Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

• A will exit the fringe before B



Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

Bf(n) = g(n) + h(n)Definition of f-cost $f(n) \le g(A)$ Admissibility of h h = 0 at a goal g(A) = f(A)

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B) –

g(A) < g(B) B is suboptimal

h = 0 at a goal

f(A) < f(B)

Optimality of A* Tree Search: Blocking

Proof:

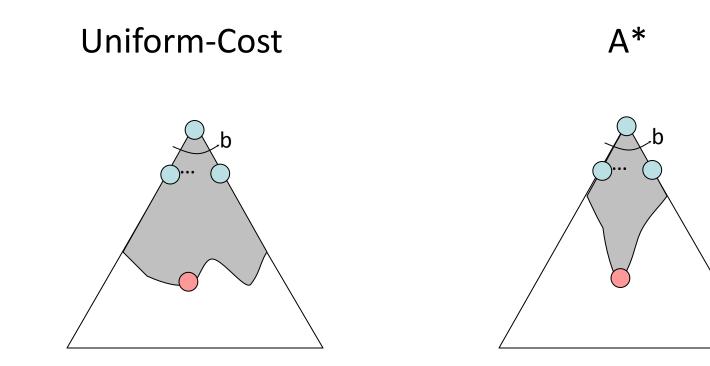
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal



 $f(n) \le f(A) < f(B)$

Properties of A*

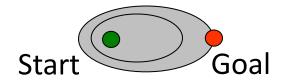
Properties of A*

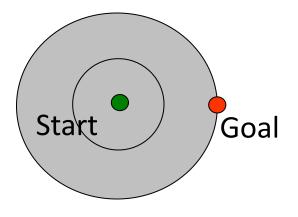


UCS vs A* Contours

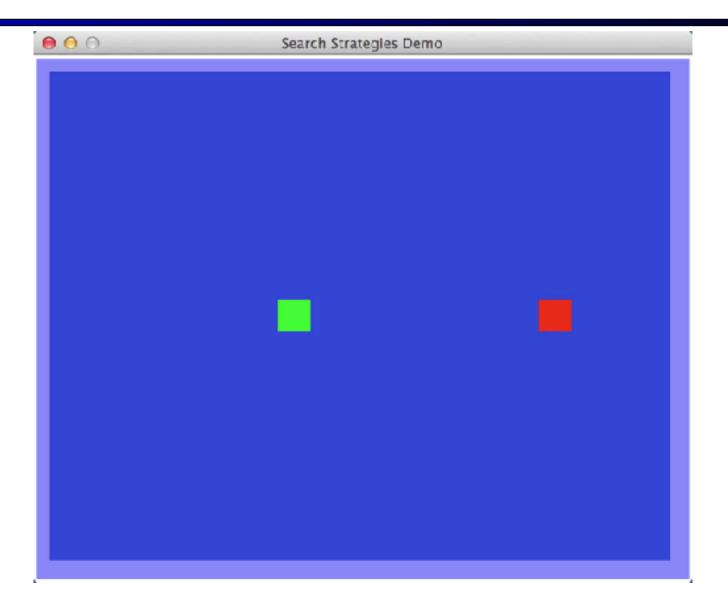
 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

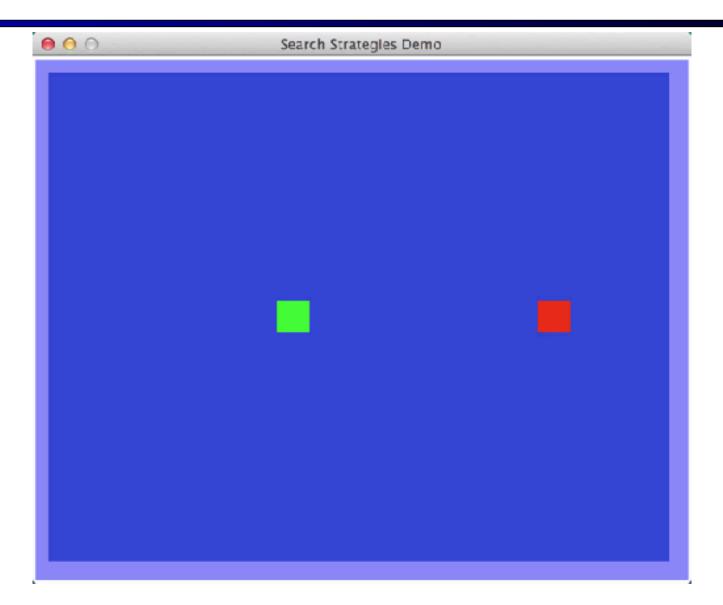




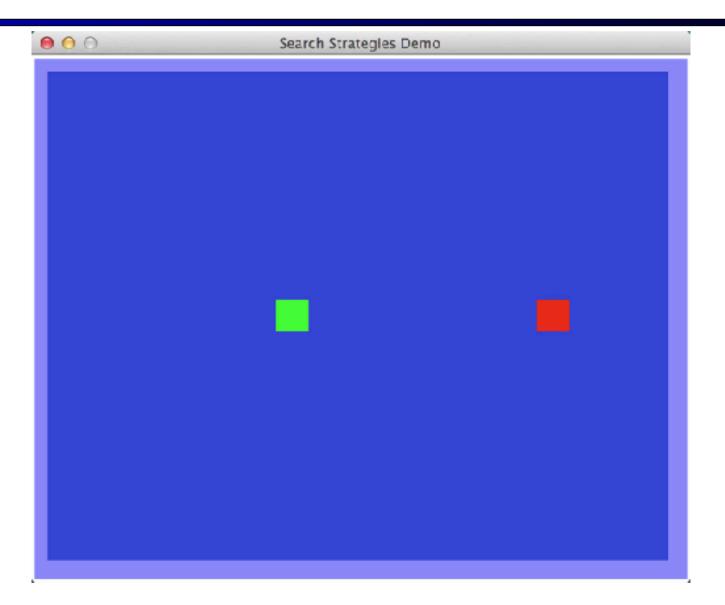
Video of Demo Contours (Empty) -- UCS



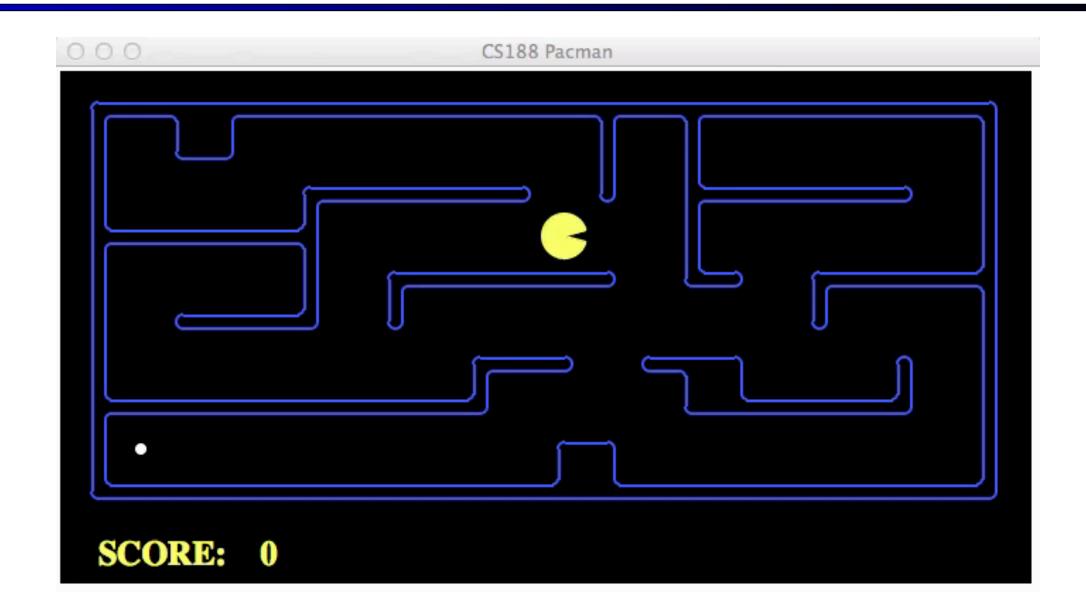
Video of Demo Contours (Empty) -- Greedy



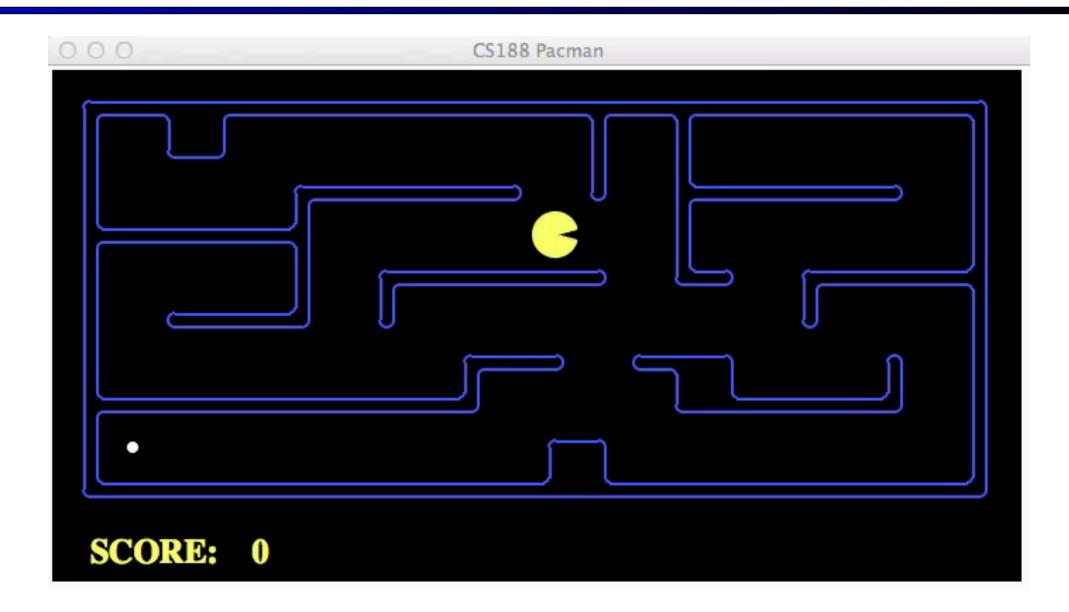
Video of Demo Contours (Empty) – A*



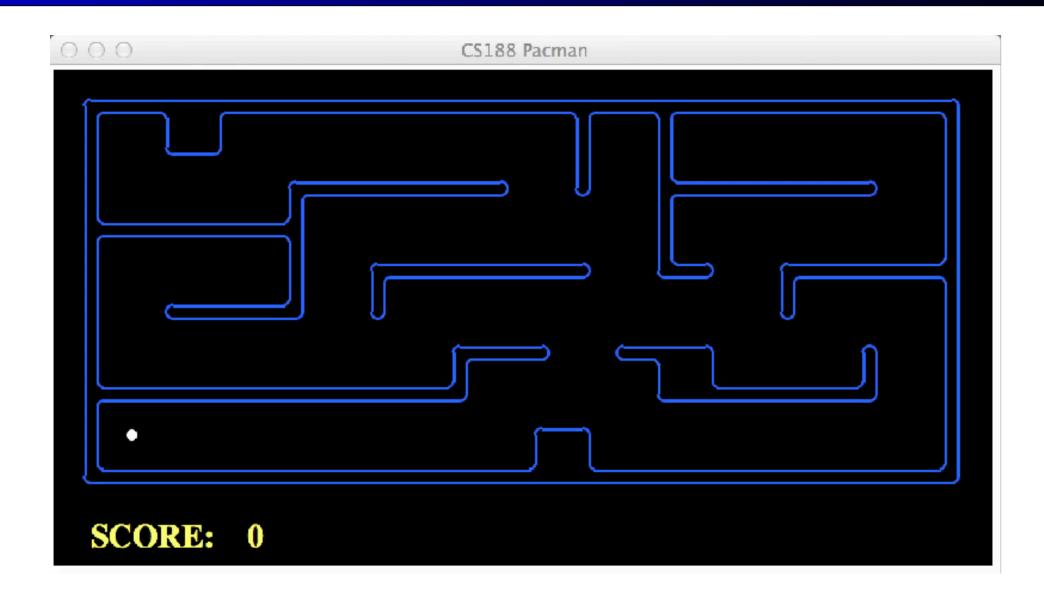
Pacman - A*



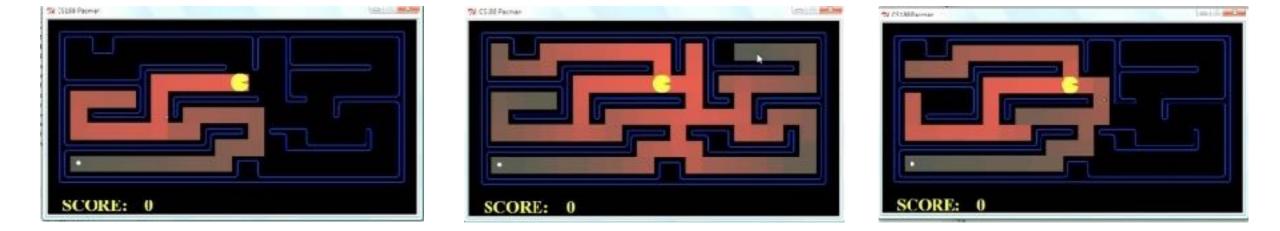
Pacman - Greedy



Pacman - UCS



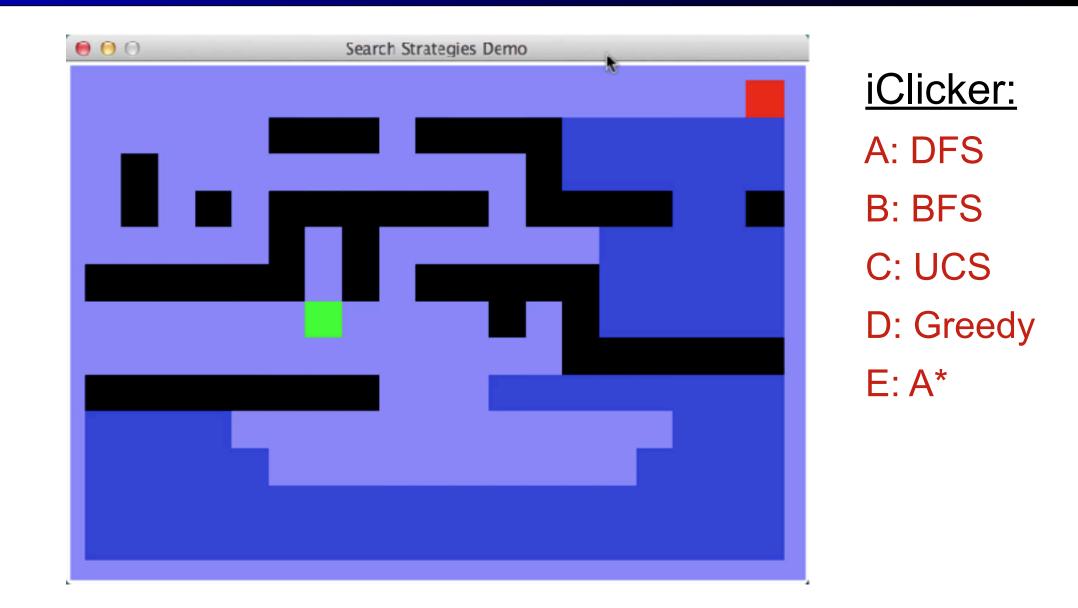
Comparison

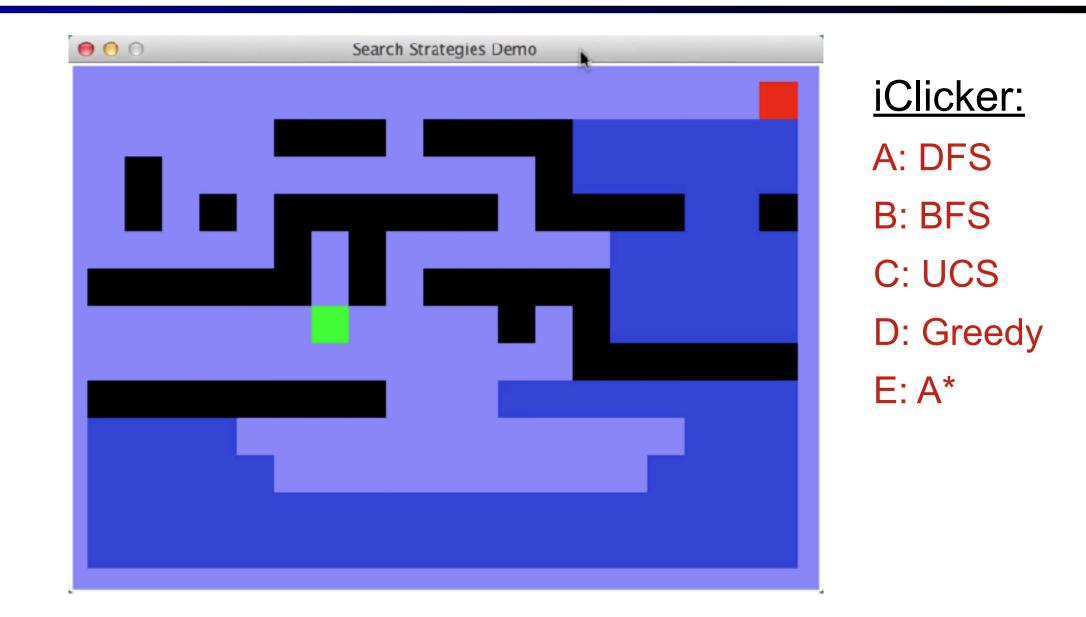


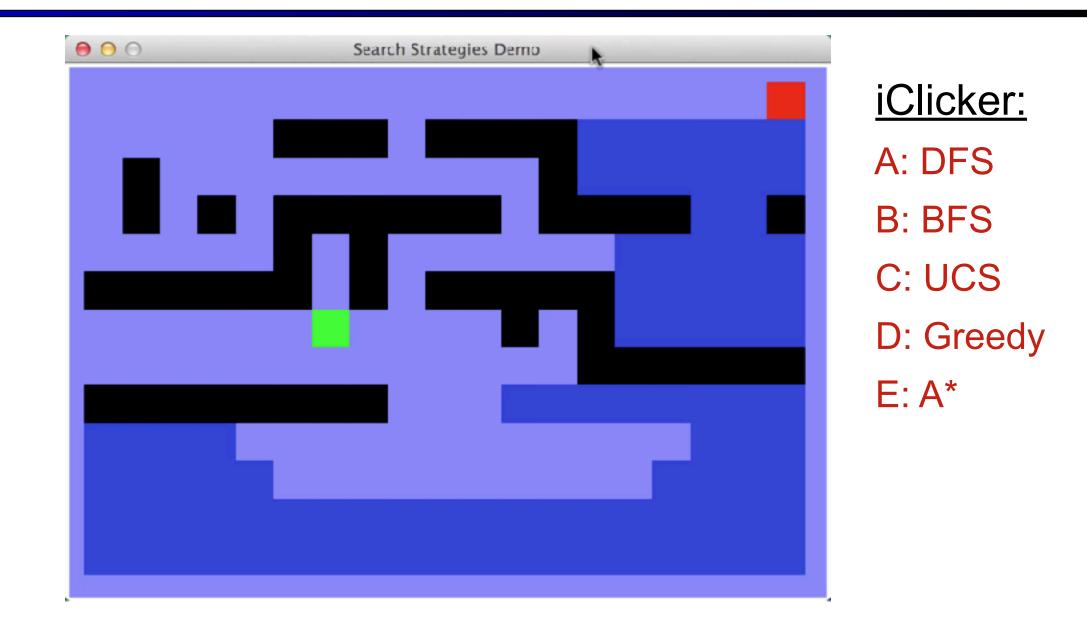
Greedy

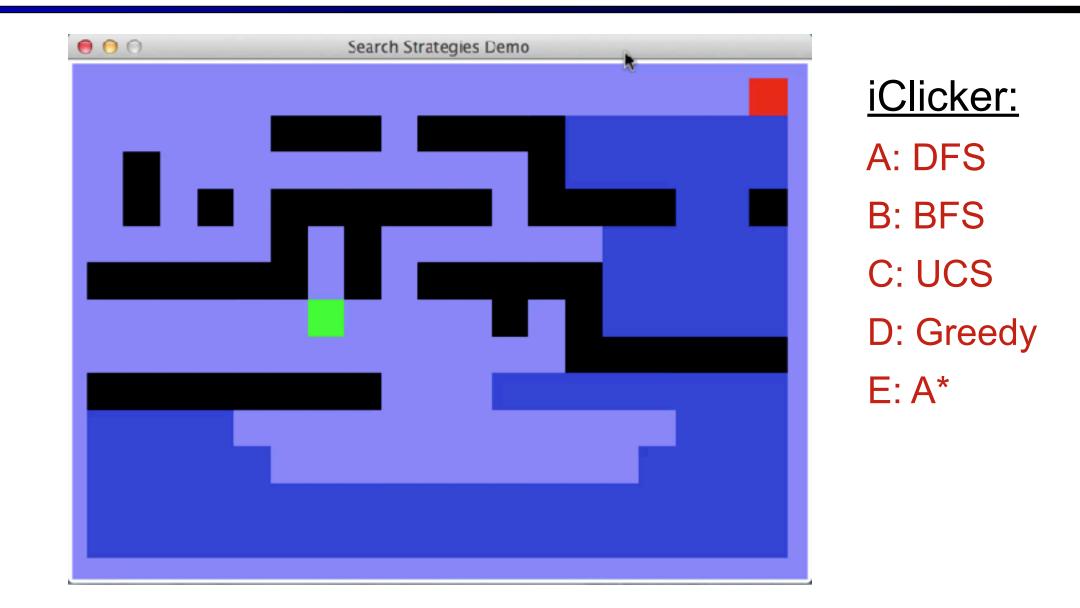
Uniform Cost

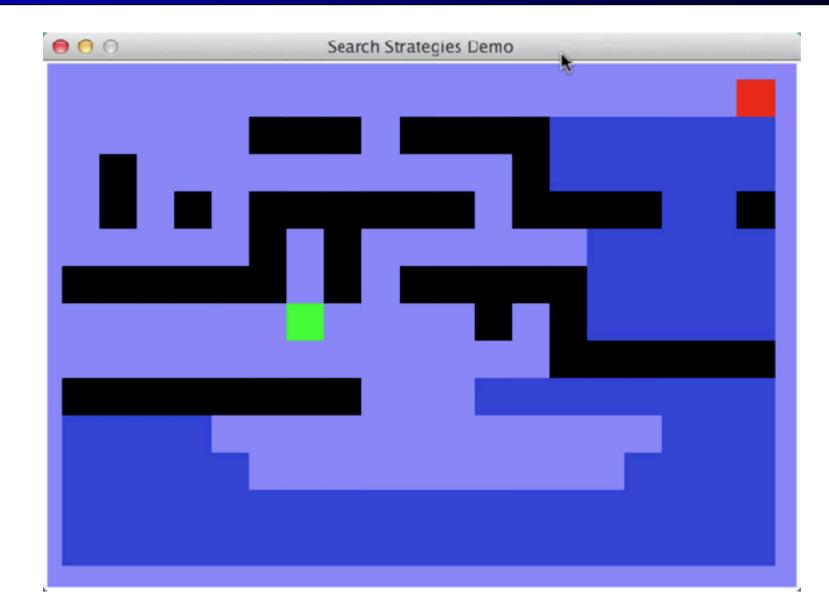
A*











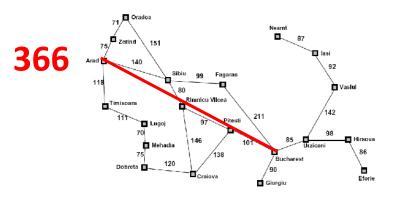
A* Applications

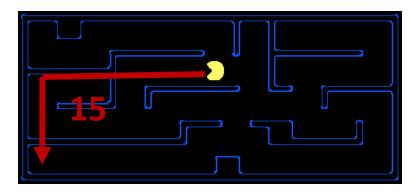
- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

...

Creating Admissible Heuristics

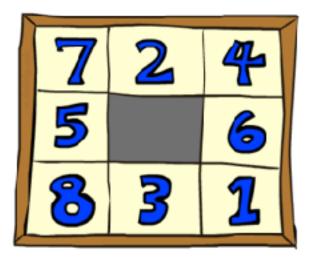
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available



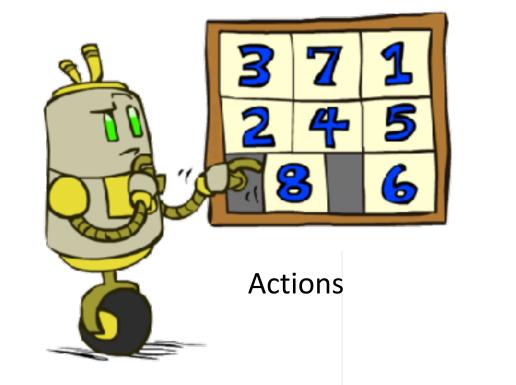


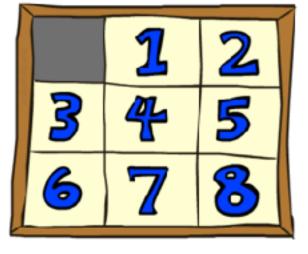
Inadmissible heuristics are often useful too

Example: 8 Puzzle



Start State



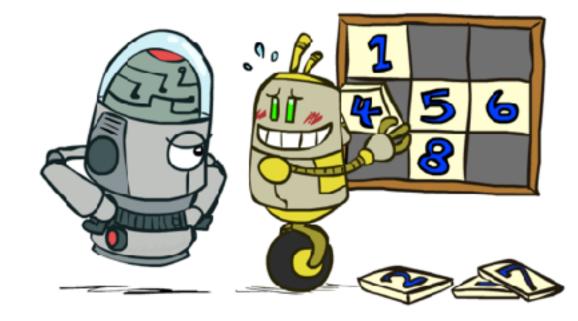


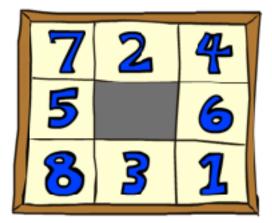
Goal State

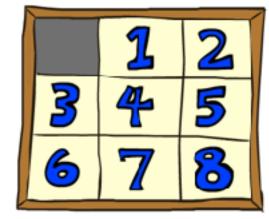
- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a *relaxed-problem* heuristic







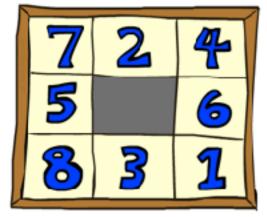
Start State

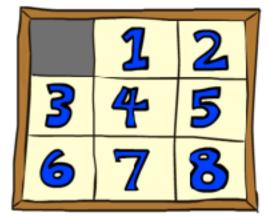
Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?





Start State

	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle III

How about using the *actual cost* as a heuristic?

- Would it be admissible?
- Would we save on nodes expanded?
- What's wrong with it?

With A*: a trade-off between quality of estimate and work per node

 As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

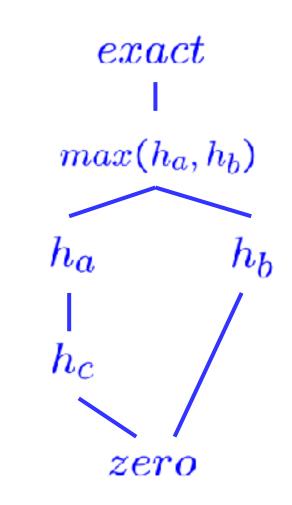
Dominance: $h_a \ge h_c$ if

 $\forall n : h_a(n) \ge h_c(n)$

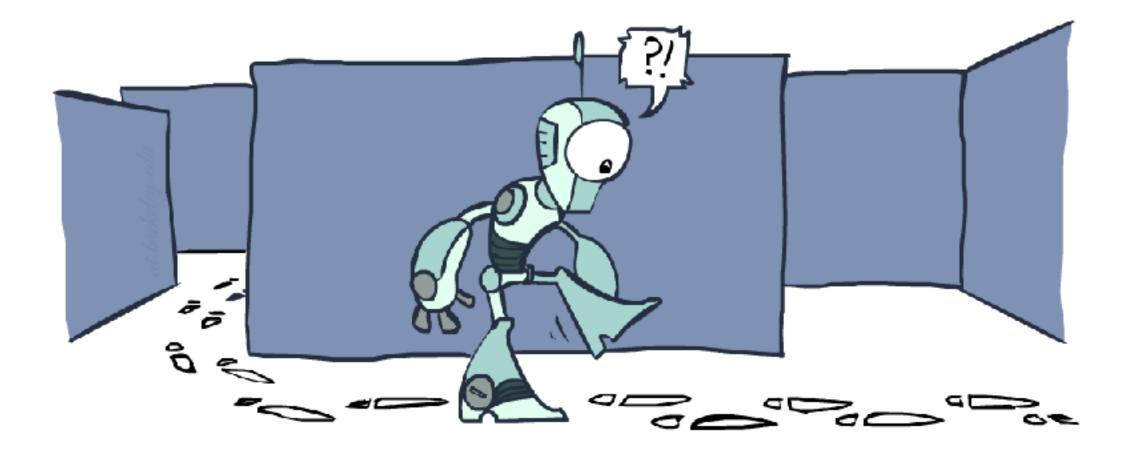
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

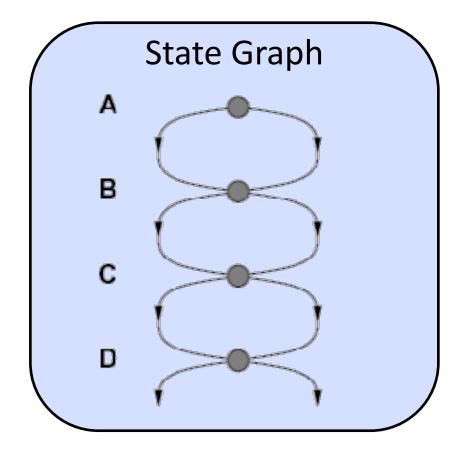


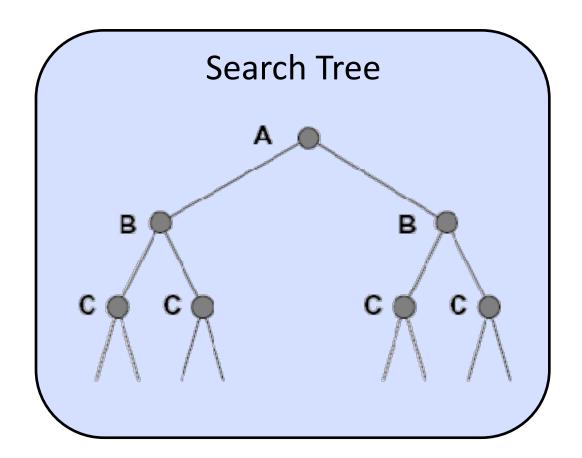
Graph Search



Tree Search: Extra Work!

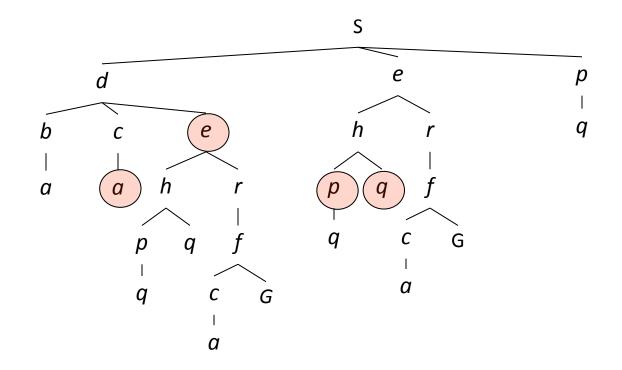
Failure to detect repeated states can cause exponentially more work.





Graph Search

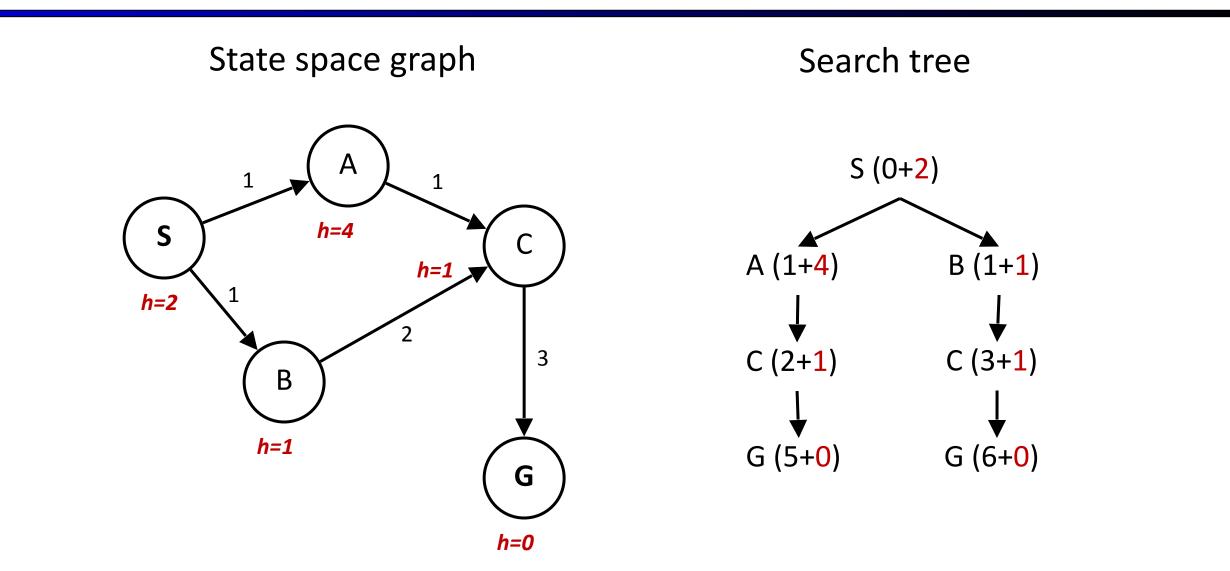
In BFS, for example, we shouldn't bother expanding the circled nodes (why?)



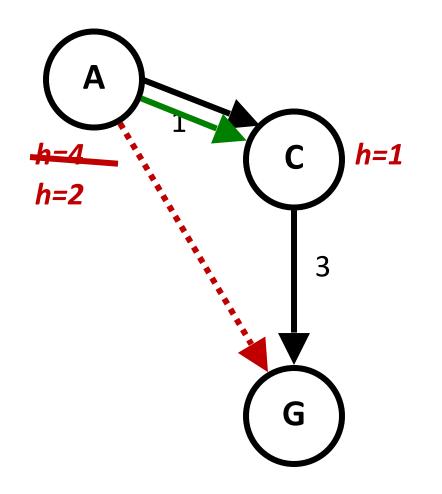
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?



Consistency of Heuristics



- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

 $h(A) \leq actual cost from A to G$

■ Consistency: heuristic "arc" cost ≤ actual cost for each arc

 $h(A) - h(C) \le cost(A to C)$

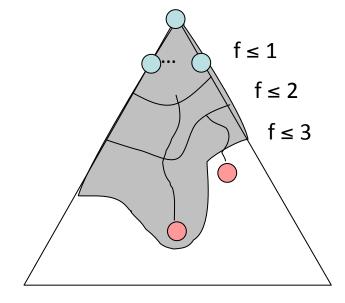
- i.e. if the true cost of an edge from A to C is X, then the h-value should not decrease by more than X between A and C.
- Consequences of consistency:
 - The f value along a path never decreases

 $h(A) \le cost(A to C) + h(C)$

A* graph search is optimal

Optimality of A* Graph Search

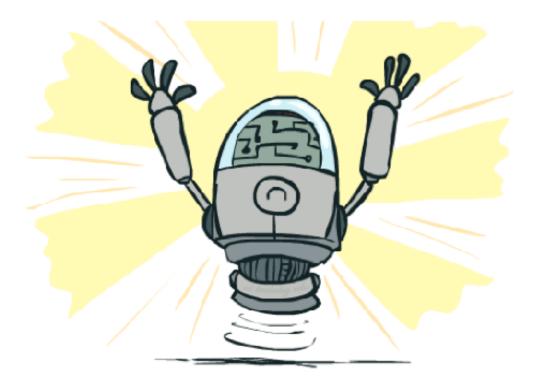
- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal



Optimality

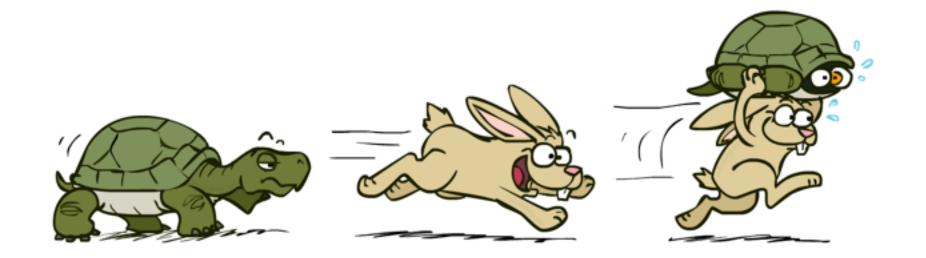
• Tree search:

- A* is optimal if heuristic is admissible
- UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems



A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems



Tree Search Pseudo-Code

```
function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if fringe is empty then return failure

node \leftarrow REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

for child-node in EXPAND(STATE[node], problem) do

fringe \leftarrow INSERT(child-node, fringe)

end

end
```

Graph Search Pseudo-Code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
    closed \leftarrow an empty set
   fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE[node] is not in closed then
           add STATE[node] to closed
           for child-node in EXPAND(STATE[node], problem) do
               fringe \leftarrow \text{INSERT}(child-node, fringe)
           end
   end
```

Value-laden choices

Imagine a simplified self-driving car scenario via search-based path planning

- What cost function is chosen?
 - Optimize speed only, without regard for safety
 - Optimize for safety of passenger over that of pedestrians
- What aspects of the world does the state space include?
 - What if only road information is used and nothing about pedestrians?
- How are the dynamics of the world modeled?
 - What if overly simple human model is used? E.g., Pedestrians only take shortest path between two points, ignoring all other context.
 - Or if much more effort is put into creating a good model of motorcyclist behavior than bicyclist behaviors?
 - Or if the pedestrian model is learned from data from the USA, but deployed in many other countries?