CS 383: Artificial Intelligence

Informed Search

Prof. Scott Niekum

UMass Amherst

[These slides based on ones created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Today

» Informed Search

s Heuristics
= Greedy Search
= A* Search

= Graph Search

Recap: Search

= Search problem:

= States (configurations of the world)
= Actions and costs

= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states

= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

The One Queue

= All these search algorithms are the same
except for fringe strategies
" sE S - SIEEE]
= Conceptually, all fringes are priority 0 A\UR\ |
gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can avoid
the log(n) overhead from an actual
priority queue, by using stacks and
queues

= Can even code one implementation that
takes a variable queuing object

Uninformed Search

Uniform Cost Search

= Strategy: expand lowest path cost

= The good: UCS is complete and optimall!

= The bad:

= Explores options in every “direction”
= No information about goal location

Video of Demo Contours UCS Empty

‘@0 D Search Strategies Demao

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

s A heuristic is:

= A function that estimates how close a state is to a goal / \\

= Designed for a particular search problem "‘E\ S

= Examples: Manhattan distance, Euclidean distance for o
pathing

Example: Heuristic Function

o p Oradea
5 Neamt
/ \
75’u Zerind \ 151 0. \,\3_:’

0 lasi
R 92

\\
99 Fagaras !
11 - \
\. 80 [vastul
\ _/
nTimisoam Rimnicu Vilcea /.'
—~ - /
PR | e /142
-_u Lugoi \ 97 ‘!Dnestl '/
70l \ ~ . L
A 5 irsova
h Mehacdlia \' s 10T~ o Urziceni \
- \ 88
75‘ 1 2 0 \g 136 /" Bucharest ‘-\‘
Dobreta O} — _ \ ,,/90 ﬂ
Craiova J o Eforie
Giurgiu

ﬂlmighl.—-linc dislance \

to Bucharest

Arad 266
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
[Fagaras 178
Giurgiu 77
Hirsovy 151
Lasl 226
Luguj 244
Mehadia 241
Neuml 234
Oradea %0
Pitesti X
Rimnicu Vilcea 193
Nibiu 253
Timiseara 229
Urzicend %0
Vaslui 199
Zerind 174

h(x)

Greedy Search

Example: Heuristic Function

o p Oradea
5 Neamt
/ \
75’u Zerind \ 151 0. \,\3_:’

0 lasi
R 92

\\
99 Fagaras !
11 - \
\. 80 [vastul
\ _/
nTimisoam Rimnicu Vilcea /.'
—~ - /
PR | e /142
-_u Lugoi \ 97 ‘!Dnestl '/
70l \ ~ . L
A 5 irsova
h Mehacdlia \' s 10T~ o Urziceni \
- \ 88
75‘ 1 2 0 \g 136 /" Bucharest ‘-\‘
Dobreta O} — _ \ ,,/90 ﬂ
Craiova J o Eforie
Giurgiu

ﬂlmighl.—-linc dislance \

to Bucharest

Arad 266
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
[Fagaras 178
Giurgiu 77
Hirsovy 151
Lasl 226
Luguj 244
Mehadia 241
Neuml 234
Oradea %0
Pitesti X
Rimnicu Vilcea 193
Nibiu 253
Timiseara 229
Urzicend %0
Vaslui 199
Zerind 174

h(x)

nRDndo:
Greedy Search fira\ &

\ TR i
AR 140 N\ _ o2
\ -

~—
S~ \\ Sibiu 99 ‘19.'3‘

11* —_— \u o
| £n n\' Vaslud

Timisoara Fimaicu Vilcea r/
» Expand the node that seems closest... S N N\ Jra
Bues | 9 Ples N /
m\n s '1| 146 /}1 \w\i\\\\ o d—quUo:ni,S \nins
Arad ™ \ s /138 / Bucnares: \86
vorea g2 |/ /20 b
Cralova / Efcrle

B Gurgu

329 374

CFaparas >
360

366 193

C 3ibiu)|><Bu-::hm'r:st)

253 0

= What can go wrong?

Greedy Search

Strategy: expand a node that you think is closest to
a goal state

= Heuristic: estimate of distance to nearest goal for each
state

Best case:
= Best-first takes you straight to the nearest goal

Common cases:
= Suboptimal route to goal due to imperfect heuristic
s Doesn’t consider cost to get to next state, only h(x)!

Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

‘®0 D Search Strategies Demo

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

« Should we stop when we enqueue a goal? IClicker:

h=2 A: Yes

@h=3 h=0 V@
2 Q 3

h=1

= No: only stop when we expand a goal

Is A* Optimal in this case?

h=6

IClicker:

A: Yes
B: No

= What will A* do here?

= What went wrong?

= Actual bad goal cost < estimated good goal cost
= We need estimates to be less than actual costs!

ldea: Admissibility

e —eeeeeee e
Heurlsk - Tron @ k

Admissible (optimistic) heuristics can still help
to delay the evaluation of bad plans, but never
overestimate the true costs

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible Heuristics
» A heuristic /1 is admissible (optimistic) if:

0 < h(n) <h™(n)

where h™(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved in using
A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
= Ais an optimal goal node

= Bisasuboptimal goal node
= hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
= Imagine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B ® T

~
N
N \
N
~

f(n) = g(n) + h(n) Definition of f-cost
f(n) < g(A) Admissibility of h

g(A) = f(A) h =0 at a goal
\q)

1. f(n) is less or equal to f(A)

Optimality of A* Tree Search: Blocking

Proof:
= Imagine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)is less than f(B)
x N

g(A) < g(B) B is suboptimal

f(A) < f(B) h =0 at a goal
- Y

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the fringe

Some ancestor n of A is on the fringe,
too (maybe Al)

Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)

3. nexpands before B

All ancestors of A expand b

A expands before B
A* search is optimal

f(n) < f(A) < f(B) }

Properties of A*

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

s Uniform-cost expands equally in all

“directions”
Sta Goal

s A* expands mainly toward the goal,

but does hedge its bets to ensure
Optima“ty Startoal

Video of Demo Contours (Empty) -- UCS

‘®0 D Search Strategies Demo

Video of Demo Contours (Empty) -- Greedy

‘®0 D Search Strategies Demo

Video of Demo Contours (Empty) — A*

‘®0 D Search Strategies Demo

Pacman - A*

Pacman - Greedy

Pacman - UCS

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

Guess algorithm (DFS / BFS / UCS / Greedy / A*)

‘@ 00

Search Strategies Demo

IClicker:
A: DFS

B: BFS

C: UCS
D: Greedy
E: A*

Guess algorithm (DFS / BFS / UCS / Greedy / A*)

‘® 00 Search Strategies Demo

IClicker:
A: DFS

B: BFS

C: UCS
D: Greedy
E: A*

Guess algorithm (DFS / BFS / UCS / Greedy / A*)

‘800 Search Strategies Demo

L3

IClicker:
A: DFS

B: BFS

C: UCS
D: Greedy
E: A*

Guess algorithm (DFS / BFS / UCS / Greedy / A*)

@00 Search Strategies Lemo

IClicker:
A: DFS

B: BFS

C: UCS
D: Greedy
E: A*

Guess algorithm (DFS / BFS / UCS / Greedy / A*)

‘® 00 Search Strategies Cemo

A* Applications

= Video games

» Pathing / routing problems
= Resource planning problems
= Robot motion planning

. _a n g u a ge a n a |yS i S 12 S-B:Jior';:}n{lt::-fn":('i":;r .;'r;& -!‘\ 0 ,F:
= P el sorant

. 5

\ e
Lo N Pt
L}[,, e LA

= Machine translation - i

= Speech recognition

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up with
admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new actions
are available

s Inadmissible heuristics are often useful too

Example: 8 Puzzle

371 1|2
slel (W [2%5 L 3E
1 SR6 8

3
8 3 6|7

Start State Actions Goal State

= What are the states?
= How many states?
= What are the actions?

= How many successors from the start state?
= What should the costs be?

8 Puzzle |

= Heuristic: Number of tiles misplaced
= Why is it admissible?

» h(start)= 8

= This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded when
the optimal path has...

...4 steps |...8 steps |...12 steps
UCS 112 6,300 3.6 x 106
TILES 13 39 227

8 Puzzle Il

time, ignoring other tiles?

What if we had an easier 8-puzzle where E
any tile could slide any direction at any

Total Manhattan distance

12
|5

7 |®

3
&

Start State Goal State

Why is it admissible?

Average nodes expanded when
the optimal path has...

...4 steps |...8 steps |...12 steps

TILES

13 39 227

MANHATTAN

12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?

= Would it be admissible?

= Would we save on nodes expanded? T
= What’s wrong with it? (/' A:\\

= With A*: a trade-off between quality of estimate and work per node

= As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

« Dominance: h, > h_if

vn ha(n) > he(n)

s Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = max(hqe(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

eract
|

max(hg, hy,)
///”\\\\
h,a, h/h

h:C'.

N

AN,

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph

(x

~

-~

Search Tree \

A @

B .
2 "
! "
y "
Y "
d)
) ,
i ,

{ \
! i)
/ '
4 ',
{ \
) 1Y
f '\
J Fo
) fo
N L
) ' | [
) \ ¥ '
y 1 \
) \) .
\ 1

4 'l'
£ ‘1.
i 'l'
' ",
. '
" P
.)
| P
) § [
4 \ | [
\
[1

¥ l.
y /
| '
))
) '

Graph Search

= In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e p

/\ |
b/m h o or q
| /@I
r f
- OO
f a ¢ G
|
/\G .

C
I
a

Graph Search

= ldea: never expand a state twice
= How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= If not new, skip it, if new add to closed set

= Can graph search wreck completeness? Why/why not?

= How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

o

A (1+4) B(1+1)
v v
C (2+1) C (3+1)

\ 4 \ 4
G (5+0) G (6+0)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
= Consistency: heuristic “arc” cost < actual cost for each arc
h(A) — h(C) < cost(A to C)
i.e. if the true cost of an edge from A to Cis X, then the h-value
should not decrease by more than X between A and C.

« Consequences of consistency:

= The fvalue along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search

s Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach s
optimally are expanded before nodes that
reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:

= A¥*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:

= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from relaxed
problems

A*: Summary

s A* uses both backward costs and (estimates of) forward costs
» A* is optimal with admissible / consistent heuristics

= Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a sclution, or failure

fringe <— INSERT(MAKE-NODE(INITIAL-STATE|problem] |, fringe)
loop do

if jringe is empty then return failure

node < REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE|node]) then return node

for chid-node in EXPAND(STATE|nodz|, problem) do

fringe <— INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPE SEARCH(problem, fringe) return a solution, or failure
ciosed + an empty set
fringe « INSERT|MAKE-NODE(INITIAL-STATE([problem)|), fringe)
loop do
if fringe is empty then return tailure
node «— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE|node¢|) then return node
if STATE[node] is not in closed then
add STATE[nade| to closed
for child-nodec in EXPAND(STATE node|, problem) do
fringe « INSER T child-node, fringe)
end

end

Value-laden choices

= Imagine a simplified self-driving car scenario via search-based path planning
= What cost function is chosen?

= Optimize speed only, without regard for safety

= Optimize for safety of passenger over that of pedestrians
= What aspects of the world does the state space include?

= What if only road information is used and nothing about pedestrians?
= How are the dynamics of the world modeled?

= What if overly simple human model is used? E.g., Pedestrians only take shortest path
between two points, ignoring all other context.

= Or if much more effort is put into creating a good model of motorcyclist behavior than
bicyclist behaviors?

= Orif the pedestrian model is learned from data from the USA, but deployed in many other
countries?

