
CS 383: Artificial Intelligence

Deep Learning

Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Review: Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM

or

+

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Some (Simplified) Biology

▪ Very loose inspiration: human neurons

Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:

▪ Positive, output +1

▪ Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?

Non-Linearity

Non-Linear Separators

▪ Data that is linearly separable works out great for linear decision rules:

▪ But what are we going to do if the dataset is just too hard?

▪ How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next slide adapted from Ray Mooney, UT

Non-Linear Separators

▪ General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

Φ: x → φ(x)

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

[Dalal and Triggs, 2005]

Features and Generalization

Image HoG

Manual Feature Design Deep Learning

▪ Manual feature design requires:

▪ Domain-specific expertise

▪ Domain-specific effort

▪ What if we could learn the features, too?

▪ Deep Learning

Perceptron

Σ
f1

f2

f3

w1

w2

w3

>0?

Two-Layer Perceptron Network

Σ

f1

f2

f3
w13

w23

w33

>0?

Σ
w12

w22

w32

>0?

Σ
w11

w21

w31

>0?

Σ

w1

w2

w3

>0?

N-Layer Perceptron Network

Σ

f1

f2

f3

>0?

Σ >0?

Σ >0?

Σ

Σ >0?

Σ >0?

Σ >0?

Σ >0?

Σ >0?

Σ >0?…

…

…

>0?

Performance

graph credit Matt
Zeiler, Clarifai

Performance

graph credit Matt
Zeiler, Clarifai

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Performance

graph credit Matt
Zeiler, Clarifai

AlexNet

Speech Recognition

graph credit Matt Zeiler, Clarifai

N-Layer Perceptron Network

Σ

f1

f2

f3

>0?

Σ >0?

Σ >0?

Σ

Σ >0?

Σ >0?

Σ >0?

Σ >0?

Σ >0?

Σ >0?…

…

…

>0?

Local Search

▪ Simple, general idea:

▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ Neighbors = small perturbations of w

▪ Properties

▪ Plateaus and local optima

How to escape plateaus and find a good local optimum?

How to deal with very large parameter vectors? E.g.,

Perceptron

Σ
f1

f2

f3

w1

w2

w3

>0?

▪ Objective: Classification Accuracy

▪ Issue: many plateaus  how to measure incremental progress toward a correct label?

Soft-Max

▪ Score for y=1:	 	 	 Score for y=-1:

▪ Probability of label:

▪ Objective:

▪ Log:

Two-Layer Neural Network

Σ

f1

f2

f3
w13

w23

w33

>0?

Σ
w12

w22

w32

>0?

Σ
w11

w21

w31

>0?

Σ

w1

w2

w3

N-Layer Neural Network

Σ

f1

f2

f3

>0?

Σ >0?

Σ >0?

Σ

Σ >0?

Σ >0?

Σ >0?

Σ >0?

Σ >0?

Σ >0?…

…

…

Our Status

▪ Our objective	 	

▪ Changes smoothly with changes in w

▪ Doesn’t suffer from the same plateaus as the perceptron network

▪ Challenge: how to find a good w ?

▪ Equivalently:

1-d optimization

▪ Could evaluate	 	 and

▪ Then step in best direction

▪ Or, evaluate derivative:

▪ Tells which direction to step in

2-D Optimization

Source: Thomas Jungblut’s Blog

▪ Idea:

▪ Start somewhere

▪ Repeat: Take a step in the steepest descent direction

Steepest Descent

Figure source: Mathworks

What is the Steepest Descent Direction?

What is the Steepest Descent Direction?

▪ Steepest Direction = direction of the gradient

Optimization Procedure 1: Gradient Descent

▪ Init:

▪ For i = 1, 2, …

▪ : learning rate --- tweaking parameter that needs to be
chosen carefully

▪ How? Try multiple choices

▪ Crude rule of thumb: update changes about 0.1 – 1 %

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201637

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201638

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201639

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent? very slow
progress along flat direction, jitter along steep one

Optimization Procedure 2: Momentum

▪ Init:

▪ For i = 1, 2, …

▪ Gradient Descent

▪ Init:

▪ For i = 1, 2, …

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).

- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

▪ Momentum

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201641

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Momentum?

How do we actually compute gradient w.r.t. weights?

Backpropagation!

1

Backpropagation Learning

15-486/782: Artificial Neural Networks
David S. Touretzky

Fall 2006

2

LMS / Widrow-Hoff Rule

Works fine for a single layer of trainable weights.

What about multi-layer networks?

S

wi

xi

y

wi = −y−dxi

3

With Linear Units, Multiple Layers
Don't Add Anything





U : 2×3 matrix

V : 3×4 matrix

x

Linear operators are closed under composition.
Equivalent to a single layer of weights W=U×V

But with non-linear units, extra layers add
computational power.

y

y = U×V x = U×V 
2×4

x

4

What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of
trainable
weights

separating hyperplane

5

2 layers of
trainable
weights

convex polygon region

6

3 layers of
trainable
weights

composition of polygons:
convex regionsnon

7

How Do We Train A
Multi-Layer Network?

Error = d-yy

Error = ???

Can't use perceptron training algorithm because
we don't know the 'correct' outputs for hidden units.

8

How Do We Train A
Multi-Layer Network?

y

Define sum-squared error:

E =
1

2
∑
p

dp−yp2

Use gradient descent error minimization:

wij = −
∂E

∂wij

Works if the nonlinear transfer function is differentiable.

9

Deriving the LMS or “Delta” Rule
As Gradient Descent Learning

y = ∑
i

wi xi

E = 1

2
∑
p

dp−y
p2 dE

d y
= y−d

∂E

∂wi

=
dE

d y
⋅
∂ y

∂wi

= y−dxi

wi = −
∂E

∂wi

= −y−dxixi

wi

y

How do we extend this to two layers?

10

Switch to Smooth Nonlinear Units

net j = ∑
i

wij yi

y j = gnet j

Common choices for g:

g x =
1

1e
−x

g 'x = gx⋅1−gx

g x=tanhx

g 'x=1 /cosh
2x

g must be differentiable

11

Gradient Descent with Nonlinear Units

 y=g net=tanh ∑i wi xi
dE

dy
=y−d,

dy

dnet
=1/cosh

2net ,
∂net

∂wi

=xi

∂E

∂wi

=
dE

dy
⋅
dy

dnet
⋅
∂net

∂wi

= y−d/cosh
2

∑i wi xi⋅xi

tanh(Sw
i
x

i
)xi

wi
y

12

Now We Can Use The Chain Rule

yk

wjk

y j

wij

yi

∂E
∂yk

= yk−dk

k =
∂E

∂netk
= yk−dk⋅g'netk 

∂E

∂wjk

=
∂E

∂netk
⋅
∂netk
∂wjk

=
∂E

∂netk
⋅y j

∂E

∂y j

= ∑
k
 ∂E

∂netk
⋅
∂netk
∂ y j


 j =

∂E
∂net j

=
∂E
∂ y j

⋅g'net j

∂E

∂wij

=
∂E

∂net j
⋅yi

12

Now We Can Use The Chain Rule

yk

wjk

y j

wij

yi

∂E
∂yk

= yk−dk

k =
∂E

∂netk
= yk−dk⋅g'netk 

∂E

∂wjk

=
∂E

∂netk
⋅
∂netk
∂wjk

=
∂E

∂netk
⋅y j

∂E

∂y j

= ∑
k
 ∂E

∂netk
⋅
∂netk
∂ y j


 j =

∂E
∂net j

=
∂E
∂ y j

⋅g'net j

∂E

∂wij

=
∂E

∂net j
⋅yi

12

Now We Can Use The Chain Rule

yk

wjk

y j

wij

yi

∂E
∂yk

= yk−dk

k =
∂E

∂netk
= yk−dk⋅g'netk 

∂E

∂wjk

=
∂E

∂netk
⋅
∂netk
∂wjk

=
∂E

∂netk
⋅y j

∂E

∂y j

= ∑
k
 ∂E

∂netk
⋅
∂netk
∂ y j


 j =

∂E
∂net j

=
∂E
∂ y j

⋅g'net j

∂E

∂wij

=
∂E

∂net j
⋅yi

13

Weight Updates

∂E

∂wjk

=
∂E

∂netk
⋅
∂netk
∂wjk

= k⋅y j

∂E

∂wij

=
∂E

∂net j
⋅
∂net j
∂wij

=  j⋅yi

wjk = −⋅
∂E

∂wjk

wij = −⋅
∂E

∂wij

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201656

Deep learning: classification + retrieval

[Krizhevsky 2012]

Classification Retrieval

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201657

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]

Deep learning: detection + segmentation

Deep learning: Q functions/policies

Deep learning: structure prediction

Deep learning: language generation

Deep learning: image/video generation

