

CS 383: Artificial Intelligence Deep Learning

Prof. Scott Niekum — UMass Amherst

Review: Linear Classifiers

Feature Vectors

$$
\begin{array}{lll}
x & f(x) & y
\end{array}
$$

Some (Simplified) Biology

- Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$
\operatorname{activation}_{w}(x)=\sum_{i} w_{i} \cdot f_{i}(x)=w \cdot f(x)
$$

- If the activation is:
- Positive, output +1
- Negative, output -1

Non-Linearity

Non-Linear Separators

- Data that is linearly separable works out great for linear decision rules:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:

Non-Linear Separators

- General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

Features and Generalization

Image

HoG

Manual Feature Design \rightarrow Deep Learning

- Manual feature design requires:
- Domain-specific expertise
- Domain-specific effort
- What if we could learn the features, too?
- Deep Learning

Perceptron

Two-Layer Perceptron Network

N-Layer Perceptron Network

Performance

ImageNet Error Rate 2010-2014

Speech Recognition

TIMIT Speech Recognition

- Traditional Deep Learning

N-Layer Perceptron Network

Local Search

- Simple, general idea:
- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit
- Neighbors = small perturbations of w
- Properties
- Plateaus and local optima

How to escape plateaus and find a good local optimum? How to deal with very large parameter vectors? E.g., $w \in \mathbb{R}^{1 \text { billion }}$

Perceptron

- Objective: Classification Accuracy

$$
l^{\operatorname{acc}}(w)=\frac{1}{m} \sum_{i=1}^{m}\left(\operatorname{sign}\left(w^{\top} f\left(x^{(i)}\right)\right)==y^{(i)}\right)
$$

- Issue: many plateaus \rightarrow how to measure incremental progress toward a correct label?

Soft-Max

- Score for $\mathrm{y}=1: \quad w^{\top} f(x) \quad$ Score for $\mathrm{y}=-1:-w^{\top} f(x)$
- Probability of label:

$$
\begin{aligned}
p(y=1 \mid f(x) ; w) & =\frac{e^{w^{\top} f\left(x^{(i)}\right)}}{e^{w^{\top} f(x)}+e^{-w^{\top} f(x)}} \\
p(y=-1 \mid f(x) ; w) & =\frac{e^{-w^{\top} f(x)}}{e^{w^{\top} f(x)}+e^{-w^{\top} f(x)}}
\end{aligned}
$$

- Objective:

$$
\begin{aligned}
& l(w)=\prod_{i=1}^{m} p\left(y=y^{(i)} \mid f\left(x^{(i)}\right) ; w\right) \\
& l l(w)=\sum_{i=1}^{m} \log p\left(y=y^{(i)} \mid f\left(x^{(i)}\right) ; w\right)
\end{aligned}
$$

Two-Layer Neural Network

N-Layer Neural Network

Our Status

- Our objective $l l(w)$
- Changes smoothly with changes in w
- Doesn't suffer from the same plateaus as the perceptron network
- Challenge: how to find a good w ?

$$
\max _{w} l l(w)
$$

- Equivalently:

$$
\min _{w}-l l(w)
$$

1-d optimization

- Could evaluate $g\left(w_{0}+h\right)$ and $g\left(w_{0}-h\right)$
- Then step in best direction
- Or, evaluate derivative: $\frac{\partial g\left(w_{0}\right)}{\partial w}=\lim _{h \rightarrow 0} \frac{g\left(w_{0}+h\right)-g\left(w_{0}-h\right)}{2 h}$
- Tells which direction to step in

2-D Optimization

Steepest Descent

- Idea:
- Start somewhere
- Repeat: Take a step in the steepest descent direction

What is the Steepest Descent Direction?

What is the Steepest Descent Direction?

- Steepest Direction = direction of the gradient

$$
\nabla g=\left[\begin{array}{c}
\frac{\partial g}{\partial w_{1}} \\
\frac{\partial g}{\partial w_{2}} \\
\cdots \\
\frac{\partial g}{\partial w_{n}}
\end{array}\right]
$$

Optimization Procedure 1: Gradient Descent

$$
\begin{aligned}
& \text { Init: } w \\
& \quad w \leftarrow w-\alpha * \nabla g(w)
\end{aligned}
$$

- α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
- Crude rule of thumb: update changes w about 0.1-1 \%

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent?

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent?

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent? very slow progress along flat direction, jitter along steep one

Optimization Procedure 2: Momentum

. Gradient Descent

$$
\begin{aligned}
& \text { Init: } \quad w \\
& \quad \begin{array}{l}
\text { For } \mathrm{i}=1,2, \ldots \\
\quad w \leftarrow w-\alpha * \nabla g(w)
\end{array}
\end{aligned}
$$

- Momentum

$$
\begin{aligned}
& \text { - Init: } \quad w \\
& \text { For } \mathrm{i}=1,2, \ldots \\
& \quad v \leftarrow \mu * v-\alpha * \nabla g(w) \\
& \quad w \leftarrow w+v
\end{aligned}
$$

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually $\sim 0.5,0.9$, or 0.99 (Sometimes annealed over time, e.g. from $0.5->0.99$)

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with Momentum?

How do we actually compute gradient w.r.t. weights?

Backpropagation!

Backpropagation Learning

15-486/782: Artificial Neural Networks
David S. Touretzky

Fall 2006

LMS / Widrow-Hoff Rule

Works fine for a single layer of trainable weights. What about multi-layer networks?

With Linear Units, Multiple Layers Don't Add Anything

\bar{y}
$\uparrow \boldsymbol{U}: \quad 2 \times 3$ matrix

$$
\bar{y}=\boldsymbol{U} \times(\boldsymbol{V} \bar{x})=\underbrace{(\boldsymbol{U} \times \boldsymbol{V})}_{2 \times 4} \overline{\bar{x}}
$$

Linear operators are closed under composition. Equivalent to a single layer of weights $\boldsymbol{W}=\boldsymbol{U} \times \boldsymbol{V}$

But with non-linear units, extra layers add computational power.

What Can be Done with Non-Linear (e.g., Threshold) Units?

1 layer of
trainable weights

separating hyperplane

How Do We Train A Multi-Layer Network?

Can't use perceptron training algorithm because we don't know the 'correct' outputs for hidden units.

How Do We Train A Multi-Layer Network?

Define sum-squared error:

$$
E=\frac{1}{2} \sum_{p}\left(d^{p}-y^{p}\right)^{2}
$$

Use gradient descent error minimization:

$$
\Delta w_{i j}=-\eta \frac{\partial E}{\partial w_{i j}}
$$

Works if the nonlinear transfer function is differentiable.

Deriving the LMS or "Delta" Rule As Gradient Descent Learning

$$
\begin{array}{cc}
y=\sum_{i} w_{i} x_{i} \\
E=\frac{1}{2} \sum_{p}\left(d^{p}-y^{p}\right)^{2} & \frac{d E}{d y}=y-d \\
\frac{\partial E}{\partial w_{i}}=\frac{d E}{d y} \cdot \frac{\partial y}{\partial w_{i}}=(y-d) x_{i} \\
x_{i} & \Delta w_{i}=-\eta \frac{\partial E}{\partial w_{i}}=-\eta(y-d) x_{i}
\end{array}
$$

How do we extend this to two layers?

Switch to Smooth Nonlinear Units

$$
\begin{aligned}
\text { net }_{j} & =\sum_{i} w_{i j} y_{i} \\
y_{j} & =\mathrm{g}\left(\text { net }_{j}\right) \quad g \text { must be differentiable }
\end{aligned}
$$

Common choices for g :

$$
\begin{aligned}
& g(x)=\frac{1}{1+e^{-x}} \\
& g^{\prime}(x)=g(x) \cdot(1-g(x))
\end{aligned}
$$

$$
g(x)=\tanh (x)
$$

$$
g^{\prime}(x)=1 / \cosh ^{2}(x)
$$

Gradient Descent with Nonlinear Units

$$
\begin{aligned}
x_{i} \xrightarrow{w_{i}}{\tanh \left(\sum_{\left.\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)} \rightarrow y=g(n e t)=\tanh \left(\sum_{i} w_{i} x_{i}\right)\right.}^{\frac{d E}{d y}=(y-d), \quad} \begin{aligned}
& \frac{d y}{d n e t}=1 / \cosh ^{2}(n e t), \quad \frac{\partial n e t}{\partial w_{i}}=x_{i} \\
\frac{\partial E}{\partial w_{i}} & =\frac{d E}{d y} \cdot \frac{d y}{d n e t} \cdot \frac{\partial n e t}{\partial w_{i}} \\
& =(y-d) / \cosh \left(\sum_{i} w_{i} x_{i}\right) \cdot x_{i}
\end{aligned}
\end{aligned}
$$

Now We Can Use The Chain Rule

$$
\begin{aligned}
& \frac{\partial E}{\partial y_{k}}=\left(y_{k}-d_{k}\right) \\
& y_{j k} \frac{\partial E}{\partial w_{j k}}=\left(y_{k}-d_{k}\right) \cdot g^{\prime}\left(n e t_{k}\right) \\
& y_{j} \frac{\partial E}{\partial m e t_{k}} \cdot \frac{\partial n e t_{k}}{\partial w_{j k}}=\sum_{k}\left(\frac{\partial E}{\partial n e t_{k}} \cdot \frac{\partial n e t_{k}}{\partial y_{j}}\right) \\
& \delta_{j}=\frac{\partial E}{\partial n e t_{j}}=\frac{\partial E}{\partial y_{j}} \cdot g^{\prime}\left(\text { net }_{j}\right) \\
& \frac{\partial E}{\partial w_{i j}}= \delta_{j} \cdot y_{i}
\end{aligned}
$$

Weight Updates

$$
\begin{gathered}
\frac{\partial E}{\partial w_{j k}}=\frac{\partial E}{\partial n e t_{k}} \cdot \frac{\partial n e t_{k}}{\partial w_{j k}}=\delta_{k} \cdot y_{j} \\
\frac{\partial E}{\partial w_{i j}}=\frac{\partial E}{\partial n e t_{j}} \cdot \frac{\partial n e t_{j}}{\partial w_{i j}}=\delta_{j} \cdot y_{i} \\
\Delta w_{j k}=-\eta \cdot \frac{\partial E}{\partial w_{j k}} \quad \Delta w_{i j}=-\eta \cdot \frac{\partial E}{\partial w_{i j}}
\end{gathered}
$$

Deep learning: classification + retrieval

Classification

Retrieval

Deep learning: detection + segmentation

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Deep learning: Q functions/policies

Deep learning: structure prediction

Deep learning: language generation

ChatGPT 3.5 *

4 You
Make up a 5 -sentence story about "Sharky", a tocth-brushing shark superhero. Make each sentence a bullet point.

ChatGPT

- In the bustling city of Dentopolis, Sharky, the tooth-brushing shark superhero, patrolled the streets with a gleaming toothbrush in hand.
- With a fin-tastic swoosh, Sharky would dive into action whenever a cavity-causing villain threatened the dental hygiene of citizens.
- His powerful jaws chomped down on plaque and tartar, leaving behind a trail of sparkling smiles in his wake.
- Citizens would cheer as Sharky circled the city's shyscrapers, ensuring that oral health prevailed against the forces of dental decay.
- With a swish of his tail, Sharky would disappear into the depths, ready to surface again at the first sign of a flossing emergency in Dentopolis.
$\bigcirc 0 \% 10$

Deep learning: image/video generation

