CS 383: Artificial Intelligence

Deep Learning

Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Review: Linear Classifiers
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Some (Simplified) Biology

= Very loose inspiration: human neurons
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Linear Classifiers

= Inputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(z) = Z w; - fi(x) = w- f(x)

» |f the activation is: f, f——>
W
= Positive, output +1 5 W2 | 2 >0? —
3
= Negative, output -1  fy e}y




Non-Linearity




Non-Linear Separators

= Data thatis linearly separable works out great for linear decision rules:

= But what are we going to do if the dataset is just too hard?

@ ® *—0— *0—0—0—0—0—>
0 X

= How about... mapping data to a higher-dimensional space:

This and next slide adapted from Ray Mooney, UT



Non-Linear Separators

= General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:
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Computer Vision




Object Detection




Manual Feature Design




Features and Generalization
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[Dalal and Triggs, 2005]



Features and Generalization
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Manual Feature Design -> Deep Learning

= Manual feature design requires:
= Domain-specific expertise
= Domain-specific effort

= What if we could learn the features, too?
» Deep Learning




Perceptron




Two-Layer Perceptron Network
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N-Layer Perceptron Network
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Performance
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Speech Recognition

TIMIT Speech Recognition

® Traditional ® Deep Learning

2002 2004 2006 2008 2010 2012 2014 graph credit Matt Zeiler, Clarifai



N-Layer Perceptron Network
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Local Search

» Simple, general idea:
» Start wherever

= Repeat: move to the best neighboring state
= If no neighbors better than current, quit
= Neighbors = small perturbations of w

s Properties
= Plateaus and local optima

How to escape plateaus and find a good local optimum?
How to deal with very large parameter vectors? E.g., W =

Rlbillion



Perceptron

w
2 D {507 —»

= Objective: Classification Accuracy

m

[*(w) = % Z (Sign(wa(x(i))) —= y(i))

1=1

» Issue: many plateaus 2 how to measure incremental progress toward a correct label?



Score for y=1:

Soft-Max

w! f(z) Score fory=-1: —wa(x)

Probability of label: ew ! f(z)

Objective:

Log:

ply =1 (@)iw) = o)

e—wa(£C>

ply = —llf(@)w) = v e r@

l(w) = Hp(y =y f(2);w)

(w) = logp(y =y f(z7); w)
1—=1



Two-Layer Neural Network
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N-Layer Neural Network




Our Status

= Our objective ”(w)

= Changes smoothly with changes in w

= Doesn’t suffer from the same plateaus as the perceptron network

= Challenge: how to find a good w ?

max ([ (w)
= Equivalently: min _”(w)

w



1-d optimization

= Could evaluate g(wg + h) and g(wo — h)

= Then step in best direction

= Or, evaluate derivative: 99(wo) _ .~ g(wo+h) — g(wo — )
ow h—0 2h

= Tells which direction to step in



2-D Optimization

Source: Thomas Jungblut’'s Blog



Steepest Descent

= ldea:
= Start somewhere
= Repeat: Take a step in the steepest descent direction
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What is the Steepest Descent Direction?



What is the Steepest Descent Direction?

s Steepest Direction = direction of the gradient
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Optimization Procedure 1: Gradient Descent

s INnit: U
s FOri=1, 2, ..

w < w—a*x Vg(w)

s (: learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
a Crude rule of thumb: update changes ¢ about0.1-1%



Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 -37 25 Jan 2016




Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 -38 25 Jan 2016




Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Gradient Descent? very slow
progress along flat direction, jitter along steep one

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 -39 25 Jan 2016




Optimization Procedure 2: Momentum

s Gradient Descent

s Momentum

s INIt: U
m FOri=1, 2, ..

w <+ w—ax*x Vg(w)

s INnit: W
m FOri=1, 2, ..

vV pxv—ax Vg(w)
W< W+

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)




Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with Momentum?

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 -41 25 Jan 2016




How do we actually compute gradient w.r.t. weights?

Backpropagation!



Backpropagation Learning

15-486/782: Artificial Neural Networks
David S. Touretzky

Fall 2006



LMS / Widrow-Hoftf Rule

Works fine for a single layer of trainable weights.

What about multi-layer networks?
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With Linear Units, Multiple Layers
Don't Add Anything

O O
T U: 2X3 matrix
Q Q Q y = Ux(Vx) = (UxV)x
T V:

3X4 matrix

O O O O

Linear operators are closed under composition.
Equivalent to a single layer of weights W=UXxXV

But with non-linear units, extra layers add
computational power.



What Can be Done with
Non-Linear (e.g., Threshold) Units?

1 layer of

trainable
weights

separating hyperplane



convex polygon region
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How Do We Train A
Multi-Layer Network?

M )ﬁError = d-y
'ﬁError = 7?77

Can't use perceptron training algorithm because
we don't know the 'correct' outputs for hidden units.



How Do We Train A
Multi-Layer Network?

Define sum-squared error:

E = %Z (dp—yp)2
p

Use gradient descent error minimization:

AW.. = —n aE

v 8WU-

Works if the nonlinear transfer function is differentiable.



Deriving the LMS or “Delta” Rule
As Gradient Descent Learning

y = ZWiXi
_ 1 P ..P\2
E = §Z(d V') dE _ y—d
p dy
{ 0E _ dE oy
oL _ . — (v—d)x.
ow, dy ow, y=d)x,
RS
l OE
X, Aw; = _nﬁ—wi = —n(y—d)x,

How do we extend this to two layers?



Switch to Smooth Nonlinear Units

netj = Zwijyi

y; = g(net)) g must be differentiable

Common choices for g: |
gix) = —
1+e™

g'(x) = gx)(1-g(x)) T

g(x)=tanh(x) _
g'(x)=1/cosh*(x) T




Gradient Descent with Nonlinear Units

\

y:g(net):tanh(zi: wl.xi)

dE dy 2 dnet
——=(y—d), =1/cosh , =X,
dv (y—d) g cosh’(net) ow X
oE _ dE dy onet
ow, dy dnet ow,

= (y—d)/coshz(z Wl-Xl-)°Xl-
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Now We Can Use The Chain Rule

oF
—— = (yx—dy)
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Weight Updates
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Deep learning: classification + retrieval

Classification Retrieval

mite

black widow

snow leopard
Egyptian m

mushreom cher Madaga:

ertible agaric =9q
grille mushroom spider monkey
o pickup jelly fungus it
heach wagon glil mgus |tftordshire buliterrier mdri
Fre engine | dead-men s-fingers currant howler monkey

| [Krlzhvsky 2012]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 -56 25 Jan 2016




Deep learning: detection + segmentation

Detection Segmentation
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[Faster R-CNN: Ren, He, Girshick, Sun 2015] [Farabet et al., 2012]

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 -57 25 Jan 2016



Deep learning: Q functions/policies




Deep learning: structure prediction

DeepMind




Deep learning: language generation

ChatGPT 35 ~

You
Make up a S-sentence story about "Sharky®, atocth-brushing shark superhero. Make
each sentence a bullet point.

ChatGPT

* Inthe bustling ¢ty of Dantopolis, Sharky, the tcoth-brushing shark superhero,
patrolled the strests with a gleaming toothbrusk in hand.

* With a fin-tastic swonsh, Sharky would cive into acticn whenever a cavity-causing
villain thredlened the dental hygiene ol citizens.

* His powerful javis chomped dovin on plague and tartar, leaving behind atrail of
sparklinc smiles in his wake.

* Citizens would cheer as Sherky circled the cily's skyscrapers, ensuring that oral
health pravailed against the forces of dental decay.

* With a swish of his tail, Sharky would disapgear intc the depths, ready to surface

again atthefirst sion cf a flossing emergency n Dentopolis,



Deep learning: image/video generation




