

CS 383: Artificial Intelligence

Deep Learning

Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein, Pieter Abbeel, Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Review: Linear Classifiers

Feature Vectors

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Non-Linearity

Non-Linear Separators

Data that is linearly separable works out great for linear decision rules:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

This and next slide adapted from Ray Mooney, UT

Non-Linear Separators

 General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

[Dalal and Triggs, 2005]

Features and Generalization

Image

Manual Feature Design →Deep Learning

- Manual feature design requires:
 - Domain-specific expertise
 - Domain-specific effort

What if we could learn the features, too?
Deep Learning

Perceptron

Two-Layer Perceptron Network

N-Layer Perceptron Network

ImageNet Error Rate 2010-2014

ImageNet Error Rate 2010-2014

ImageNet Error Rate 2010-2014

ImageNet Error Rate 2010-2014

ImageNet Error Rate 2010-2014

Speech Recognition

N-Layer Perceptron Network

Local Search

Simple, general idea:

- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit
- Neighbors = small perturbations of w

Properties

Plateaus and local optima

9.

How to escape plateaus and find a good local optimum? How to deal with very large parameter vectors? E.g., $w \in \mathbb{R}^{1billion}$

Perceptron

Objective: Classification Accuracy

$$l^{\rm acc}(w) = \frac{1}{m} \sum_{i=1}^{m} \left(\operatorname{sign}(w^{\top} f(x^{(i)})) = y^{(i)} \right)$$

• Issue: many plateaus \rightarrow how to measure incremental progress toward a correct label?

Soft-Max

• Score for y=1: $w^{\top}f(x)$ Score for y=-1: $-w^{\top}f(x)$

• Probability of label: $p(y = 1|f(x); w) = \frac{e^{w^{\top}f(x^{(i)})}}{e^{w^{\top}f(x)} + e^{-w^{\top}f(x)}}$ $p(y = -1|f(x); w) = \frac{e^{-w^{\top}f(x)}}{e^{w^{\top}f(x)} + e^{-w^{\top}f(x)}}$

Two-Layer Neural Network

N-Layer Neural Network

Our Status

• Our objective ll(w)

- Changes smoothly with changes in w
- Doesn't suffer from the same plateaus as the perceptron network

Challenge: how to find a good w ?

$$\max_{w} ll(w)$$

Equivalently:

$$\min_{w} -ll(w$$

1-d optimization

Then step in best direction

• Or, evaluate derivative:
$$\frac{\partial g(w_0)}{\partial w} = \lim_{h \to 0} \frac{g(w_0 + h) - g(w_0 - h)}{2h}$$

Tells which direction to step in

2-D Optimization

Source: Thomas Jungblut's Blog

Steepest Descent

Idea:

- Start somewhere
- Repeat: Take a step in the steepest descent direction

Figure source: Mathworks

What is the Steepest Descent Direction?

What is the Steepest Descent Direction?

Steepest Direction = direction of the gradient

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \cdots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure 1: Gradient Descent

Init:
$$w$$

For i = 1, 2, ...
 $w \leftarrow w - \alpha * \nabla g(w)$

- *α*: learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes w about 0.1 1 %

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent?

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 6 - 37 25 Jan 2016

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent?

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 6 - 38

25 Jan 2016

Q: What is the trajectory along which we converge towards the minimum with Gradient Descent? very slow progress along flat direction, jitter along steep one

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 6 - 39 25 Jan 2016

Optimization Procedure 2: Momentum

Gradient Descent

Init: w

■ For i = 1, 2, ...

$$w \leftarrow w - \alpha * \nabla g(w)$$

Init:
$$w$$
For i = 1, 2, ...
$$v \leftarrow \mu * v - \alpha * \nabla g(w)$$

$$w \leftarrow w + v$$

Momentum

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).

- mu = usually ~0.5, 0.9, or 0.99 (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

Q: What is the trajectory along which we converge towards the minimum with Momentum?

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 6 - 41

25 Jan 2016

How do we actually compute gradient w.r.t. weights?

Backpropagation!

Backpropagation Learning

15-486/782: Artificial Neural Networks David S. Touretzky

Fall 2006

LMS / Widrow-Hoff Rule

Works fine for a single layer of trainable weights. What about multi-layer networks? With Linear Units, Multiple Layers Don't Add Anything

Linear operators are closed under composition. Equivalent to a single layer of weights $W=U\times V$

But with non-linear units, extra layers add computational power.

What Can be Done with Non-Linear (e.g., Threshold) Units?

separating hyperplane

convex polygon region

composition of polygons: non convex regions

How Do We Train A Multi-Layer Network?

Can't use perceptron training algorithm because we don't know the 'correct' outputs for hidden units.

How Do We Train A Multi-Layer Network?

Define sum-squared error:

$$E = \frac{1}{2} \sum_{p} (d^p - y^p)^2$$

Use gradient descent error minimization:

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$$

Works if the nonlinear transfer function is differentiable.

Deriving the LMS or "Delta" Rule As Gradient Descent Learning

How do we extend this to two layers?

Switch to Smooth <u>Nonlinear</u> Units

$$\operatorname{net}_{j} = \sum_{i} w_{ij} y_{i}$$

 $y_j = g(net_j)$ g must be differentiable

Common choices for g:

$$g(x) = \frac{1}{1 + e^{-x}}$$

$$g'(x) = g(x) \cdot (1 - g(x))$$

$$g(x) = \tanh(x)$$

$$g'(x) = \frac{1}{\cosh^2(x)}$$

Gradient Descent with Nonlinear Units

$$x_{i} \xrightarrow{w_{i}} \tanh(\Sigma w_{i} x_{i}) \longrightarrow y$$
$$y = g(net) = \tanh\left(\sum_{i} w_{i} x_{i}\right)$$

$$\frac{dE}{dy} = (y - d), \qquad \frac{dy}{dnet} = 1/\cosh^2(net), \qquad \frac{\partial net}{\partial w_i} = x_i$$

$$\frac{\partial E}{\partial w_i} = \frac{dE}{dy} \cdot \frac{dy}{dnet} \cdot \frac{\partial net}{\partial w_i}$$
$$= (y-d)/\cosh^2 \left(\sum_i w_i x_i\right) \cdot x_i$$

Now We Can Use The Chain Rule

$$\frac{\partial E}{\partial y_{k}} = (y_{k} - d_{k})$$

$$\delta_{k} = \frac{\partial E}{\partial net_{k}} = (y_{k} - d_{k}) \cdot g'(net_{k})$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial net_{k}} \cdot \frac{y_{b}}{\partial net_{k}} = \delta_{k} \cdot y_{j}$$

$$\frac{W_{jk}}{\sqrt{\frac{\partial E}{\partial y_{j}}}} = \sum_{k} \sqrt{\frac{\partial E}{\partial net_{k}}} \cdot \frac{\partial net_{k}}{\partial y_{j}}$$

$$\delta_{j} = \frac{\partial E}{\partial net_{j}} = \frac{\partial E}{\partial y_{j}} \cdot g'(net_{j})$$

$$W_{ij} = \frac{\partial E}{\partial w_{ij}} = y_{i}$$

Weight Updates

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial net_k} \cdot \frac{\partial net_k}{\partial w_{jk}} = \delta_k \cdot y_j$$
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial net_j} \cdot \frac{\partial net_j}{\partial w_{ij}} = \delta_j \cdot y_i$$

$$\Delta w_{jk} = -\eta \cdot \frac{\partial E}{\partial w_{jk}} \qquad \Delta w_{ij} = -\eta \cdot \frac{\partial E}{\partial w_{ij}}$$

Deep learning: classification + retrieval

Classification

Retrieval

[[]Krizhevsky 2012]

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 6 - 56 25 Jan 2016

Deep learning: detection + segmentation

Segmentation

Detection

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

[Farabet et al., 2012]

25 Jan 2016

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 6 - 57

Deep learning: Q functions/policies

Deep learning: structure prediction

Deep learning: language generation

ChatGPT 3.5 v

🕨 You

Make up a 5-sentence story about "Sharky", a tooth-brushing shark superhero. Make each sentence a bullet point.

ChatGPT

- In the bustling city of Dentopolis, Sharky, the tooth-brushing shark superhero, patrolled the streets with a gleaming toothbrush in hand.
- With a fin-tastic swoosh, Sharky would dive into action whenever a cavity-causing villain threatened the dental hygiene of citizens.
- His powerful jaws chomped down on plaque and tartar, leaving behind a trail of sparkling smiles in his wake.
- Citizens would cheer as Sharky circled the city's skyscrapers, ensuring that oral health prevailed against the forces of dental decay.
- With a swish of his tail, Sharky would disappear into the depths, ready to surface again at the first sign of a flossing emergency in Dentopolis.

0075

Deep learning: image/video generation

