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Kernels and Clustering
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[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Non-Separable Data




Case-Based Learning




Case-Based Reasoning

s Classification from similarity

Case-based reasoning
Predict an instance’s label using similar instances

= Nearest-neighbor classification
1-NN: copy the label of the most similar data point

K-NN: vote the k nearest neighbors (need a weighting
scheme)

Key issue: how to define similarity

Trade-offs: Small k gives relevant neighbors, Large k gives
smoother functions

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html



Parametric / Non-Parametric

s Parametric models:

= Fixed set of parameters
= More data means better settings

= Non-parametric models:

= Complexity of the classifier increases with data

= Better in the limit, often worse in the non-limit

= (K)NN is non-parametric Truth

2 Examples 10 Examples 100 Examples 10000 Examples




Nearest-Neighbor Classification

= Nearest neighbor for digits:
= Take new image
= Compare to all training images
= Assign based on closest example

s Encoding: image is vector of intensities:

A =(0.0 00030807 0.1...0.0)

s What’s the similarity function?
= Dot product of two images vectors?

sim(z, ) =o' = Z €T, T,
1

= Usually normalize vectorsso | [x|]| =1
= min =0 (when?), max =1 (when?)
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Similarity Functions




Basic Similarity
= Many similarities based on feature dot products:
sim(z, ') = f(z) - f(2) = }_ fi(z) fi(2")
i
= |f features are just the pixels:
sim(xz,2’) = -2’ = Z ;T

L

s Note: not all similarities are of this form



Invariant Metrics

= Better similarity functions use knowledge about vision

= Example: invariant metrics:
= Similarities are invariant under certain transformations
= Rotation, scaling, translation, stroke-thickness...
= E.g:

FJ.! ‘:;"

= 16 x 16 = 256 pixels; a point in 256-dim space
= These points have small similarity in R256 (why?)

= How can we incorporate such invariances into our similarities?

This and next few slides adapted from Xiao Hu, UIUC
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Rotation Invariant Metrics

= Each example is now a curve in R256

B I—’_ﬂ m E » Rotation invariant similarity:

/J s’=max s r(B), r())

P P—ixelepece
» E.g. highest similarity between images’

rotation lines




A Tale of Two Approaches...

= Nearest neighbor-like approaches

= Can use fancy similarity functions
=« Don’t actually get to do explicit learning

s Perceptron-like approaches
= Explicit training to reduce empirical error
= Can’t use fancy similarity, only linear
s Or can they? Let’s find out!






Recap: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answetr,
raise score of right answer

Wy = Wy — f(;c)

Wy = wyx + f(2)




Perceptron Weights

=« What is the final value of a weight w, of a perceptron?

= Can it be any real vector?
= No! It’s built by adding up inputs.

wy =0+ f(z1) — f(zs) + ...

wy =Y oy, flx;)
;

= Can reconstruct weight vectors (the primal representation) from
update counts (the dual representation)

Oy = (al_’y any ... n.y)



Dual Perceptron

= How to classify a new example x?

score(y,xz) = wy - f(x)
— (L\ Xj y /(1))) ' f(I)

= Z iy (f(zi) - f())

— Z vy K (g, )

.Z.

= If someone tells us the value of K for each pair of examples, never need to build the weight vectors
(or the feature vectors)!



Dual Perceptron

Start with zero counts (alpha)
Pick up training instances one by one

Try to classify x,
y = arg myax Z a; o, K(z;,xp)
1

If correct, no change!

If wrong: lower count of wrong class (for this instance), raise
count of right class (for this instance)

(l-y_‘~7z, — Cl'-y’-n —1 wy — ’LUy - f(ili’n)

Qg = Qyx 1+ 1 Wopx = Wy f(gjn)



Kernelized Perceptron

= If we had a black box (kernel) K that told us the dot product of two examples x and x’:

= Could work entirely with the dual representation
= No need to ever take dot products (“kernel trick”)

score(y,x) = wy - f(x)

— Z vy K (g, )

= Like nearest neighbor — work with black-box similarities

= Downside: slow if many examples get nonzero alpha



Kernels: Who Cares?

= So far: a very strange way of doing a very simple calculation

= “Kernel trick”: we can substitute any™ similarity function in place of the dot
product

= Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break. E.g.
convergence, mistake bounds. In practice, illegal
kernels sometimes work (but not always).



Non-Linearity




Non-Linear Separators

= Data thatis linearly separable works out great for linear decision rules:

= But what are we going to do if the dataset is just too hard?

@ ® *—0— *0—0—0—0—0—>
0 X

= How about... mapping data to a higher-dimensional space:

This and next few slides adapted from Ray Mooney, UT



Non-Linear Separators

= General idea: the original feature space can always be mapped to some higher-
dimensional feature space where the training set is separable:

________ ... ® -4
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Some Kernels

Kernels implicitly map original vectors to higher dimensional spaces, take the dot
product there, and hand the result back

Linear kernel: K(z,2")=14a'-2" = Zlv

Quadratic kernel:  K(x,2") = (z -« +1)2
—Zr,r rx +2Z’n 'z‘: -+ 1

RBF: infinite dimensional representation
K(z,2") = exp(—||z — 2/||%)

Discrete kernels: e.g. string kernels



Why Kernels?

= Can’t you just add these features on your own (e.g. add all pairs of features
instead of using the quadratic kernel)?

= Yes, in principle, just compute them
= No need to modify any algorithms

= But, number of features can get large (or infinite)

= Some kernels not as usefully thought of in their expanded representation, e.g. RBF kernels

= Kernels let us compute with these features implicitly

= Example: implicit dot product in quadratic kernel takes much less space and time per dot
product

= Of course, there’s the cost for using the pure dual algorithms: you need to compute the
similarity to every training datum



Recap: Classification

s Classification systems:
s Supervised learning
= Make a prediction given evidence
= We've seen several methods for this
» Useful when you have labeled data




Clustering

= Clustering systems:
= Unsupervised learning

= Detect patterns in unlabeled data
= E.g. group emails or search results
= E.g. find categories of customers
= E.g. detect anomalous program executions

= Useful when don’t know what you're
looking for

= Requires data, but no labels
= Often get gibberish




Clustering

= Basic idea: group together similar instances How many clusters?
= Example: 2D point patterns
iIClicker:
© 00 co®00%0 500 A: 2
O B:3
o o 000 00C0 -0 C: 4
© 0O D:6

= What could “similar” mean?
» One option: small (squared) Euclidean distance

dist(z,y) = (x — ) | (x — ) =3 (= — y;)?
)



K-Means




K-Means

= An iterative clustering algorithm

s Pick K random points as cluster
centers (means)

s Alternate:

= Assign data instances to closest
mean

= Assign each mean to the average of
its assigned points

= Stop when no points’ assignments
change




K-Means Example

e
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K-Means as Optimization

s Consider the total distance to the means:

(P({mi}v {0,1}, {pk}) — Z dist(z;, Ca.;) V
A T

points l means

assignments ./

= Each iteration reduces phi

= Two stages each iteration:
= Update assignments: fix means ¢, change assignments a
= Update means: fix assignments a, change means c




Phase I: Update Assighments

s« For each point, re-assign to

M\
closest mean: i>
4.\:.

a; = argmin dist(x;, c;)
k

= Can only decrease total
distance phil

o({wi} {ait {er}) =
Z dist(z;, cq;)
;




Phase II: Update Means

= Move each mean to the average V one
of its assigned points:

" e 1 I .
e, N

t.a; =k

= Also can only decrease total
distance... (Why?)

= Fun fact: the point y with
minimum squared Euclidean
distance to a set of points {x} is
their mean




Initialization

a K-means is non-deterministic ® o

= Requires initial means
= It does matter what you pick!
« What can go wrong? ®

= Various schemes for preventing this
kind of thing: variance-based split /
merge, initialization heuristics




K-Means Getting Stuck

s Alocal optimum:

Why doesn’t this work out like the
earlier example, with the purple
taking over half the blue?




K-Means Questions

Will K-means converge?
= To a global optimum?

Will it always find the true patterns in the data?
= If the patterns are very very clear?

Will it find something interesting?

Do people ever use it?

How many clusters to pick?



Agglomerative Clustering




Agglomerative Clustering

= Agglomerative clustering: °
= First merge very similar instances o ® o . @
= Incrementally build larger clusters out of ° ® e *
smaller clusters e o °
® o . QOX ° ®
= Algorithm: o ¢, ®eo
= Maintain a set of clusters L . ®
= Initially, each instance in its own cluster ° ®ee
= Repeat: e o
= Pick the two closest clusters
= Merge them into a new cluster
= Stop when there’s only one cluster left
. . O
¥ Produc.es not one clustering, but a family of / \
clusterings represented by a dendrogram .R .g g



Agglomerative Clustering

How should we define “closest” for clusters with
multiple elements?

Many options

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)
Average of all pairs

Ward’s method (min variance, like k-means)

Different choices create different clustering behaviors

(2D



Example: Google News
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