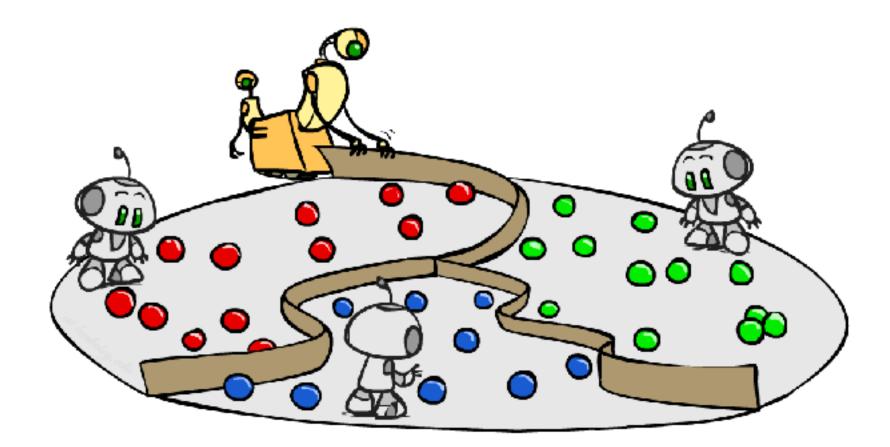
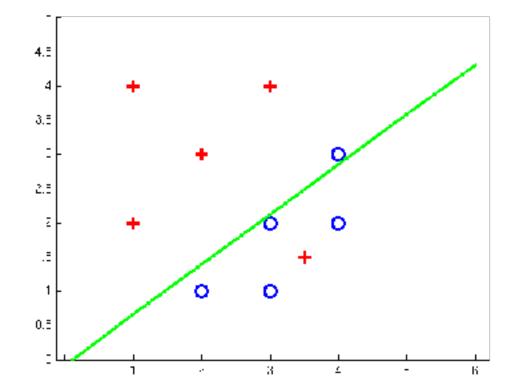
CS 383: Artificial Intelligence Kernels and Clustering



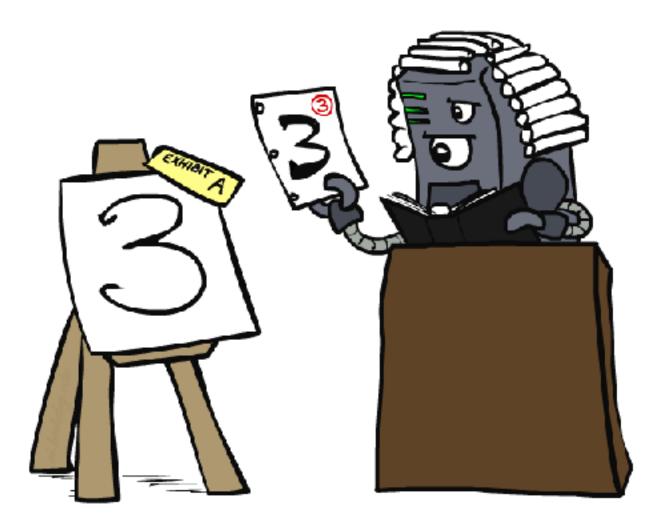
Prof. Scott Niekum – UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Separable Data



Case-Based Learning



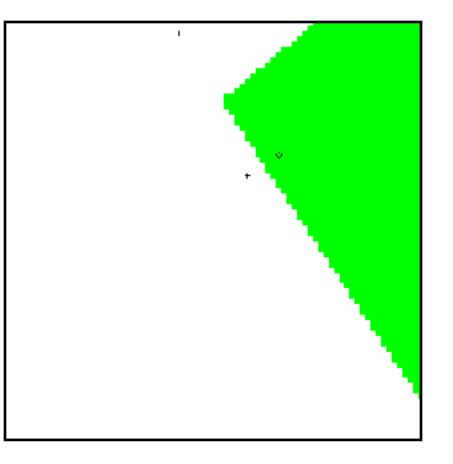
Case-Based Reasoning

Classification from similarity

- Case-based reasoning
- Predict an instance's label using similar instances

Nearest-neighbor classification

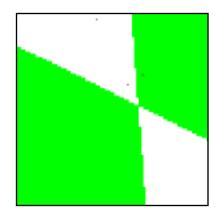
- 1-NN: copy the label of the most similar data point
- K-NN: vote the k nearest neighbors (need a weighting scheme)
- Key issue: how to define similarity
- Trade-offs: Small k gives relevant neighbors, Large k gives smoother functions



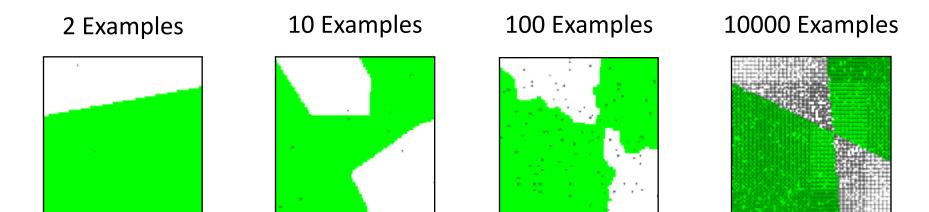
Parametric / Non-Parametric

Parametric models:

- Fixed set of parameters
- More data means better settings
- Non-parametric models:
 - Complexity of the classifier increases with data
 - Better in the limit, often worse in the non-limit
- (K)NN is non-parametric



Truth



Nearest-Neighbor Classification

0

1

2

0

1

2

Nearest neighbor for digits:

- Take new image
- Compare to all training images
- Assign based on closest example
- Encoding: image is vector of intensities:

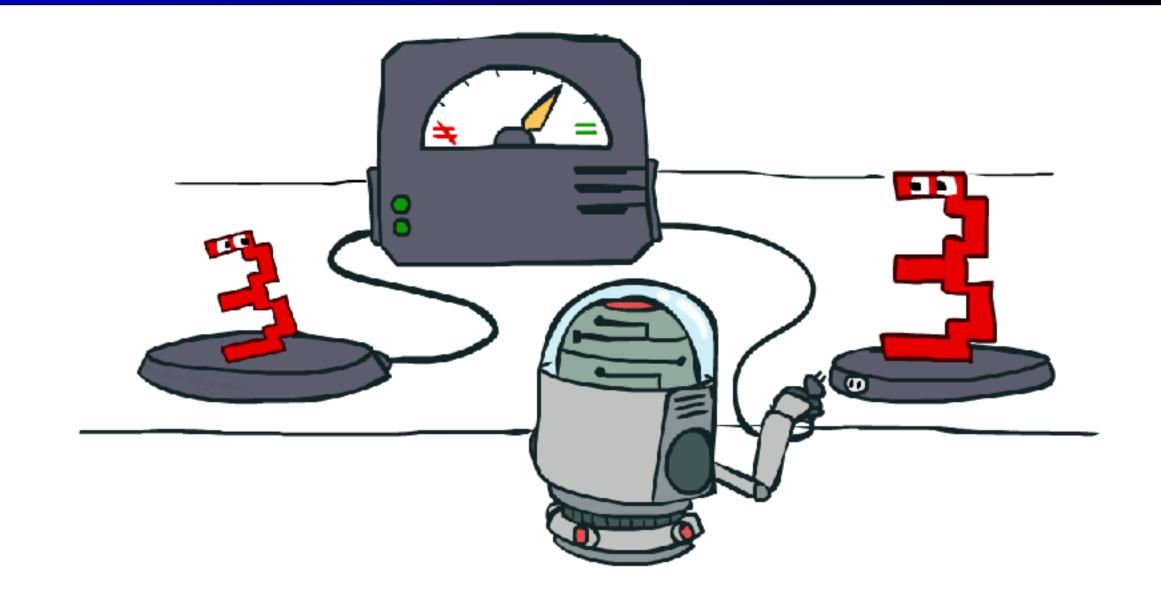
$$\langle 1 = \langle 0.0 \ 0.0 \ 0.3 \ 0.8 \ 0.7 \ 0.1 \dots 0.0 \rangle$$

- What's the similarity function?
 - Dot product of two images vectors?

$$sim(x, x') = x \cdot x' = \sum_{i} x_i x'_i$$

- Usually normalize vectors so ||x|| = 1
- min = 0 (when?), max = 1 (when?)

Similarity Functions



Basic Similarity

Many similarities based on feature dot products:

$$sim(x, x') = f(x) \cdot f(x') = \sum_{i} f_i(x) f_i(x')$$

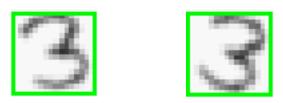
If features are just the pixels:

$$sim(x, x') = x \cdot x' = \sum_{i} x_i x'_i$$

Note: not all similarities are of this form

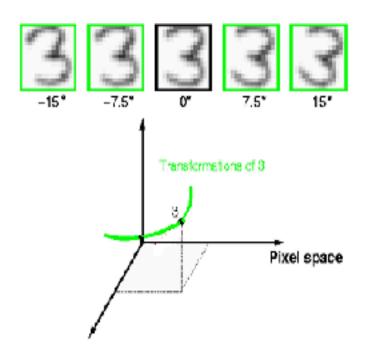
Invariant Metrics

- Better similarity functions use knowledge about vision
- Example: invariant metrics:
 - Similarities are invariant under certain transformations
 - Rotation, scaling, translation, stroke-thickness...
 - E.g:



- 16 x 16 = 256 pixels; a point in 256-dim space
- These points have small similarity in R²⁵⁶ (why?)
- How can we incorporate such invariances into our similarities?

Rotation Invariant Metrics



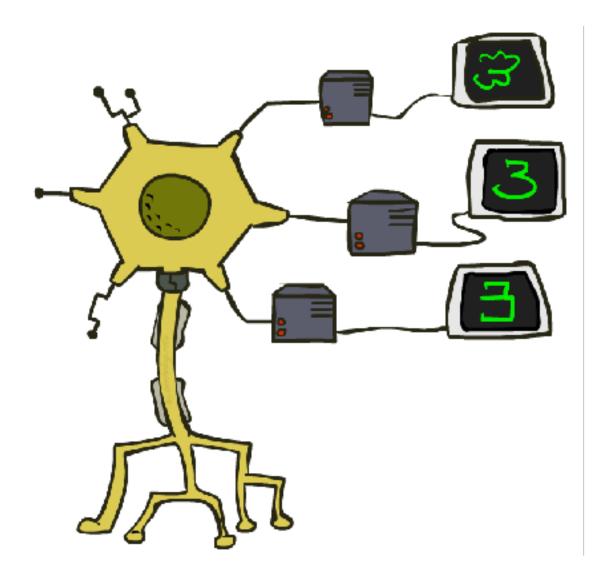
- Each example is now a curve in R²⁵⁶
- Rotation invariant similarity:

 E.g. highest similarity between images' rotation lines

A Tale of Two Approaches...

- Nearest neighbor-like approaches
 - Can use fancy similarity functions
 - Don't actually get to do explicit learning
- Perceptron-like approaches
 - Explicit training to reduce empirical error
 - Can't use fancy similarity, only linear
 - Or can they? Let's find out!

Kernelization



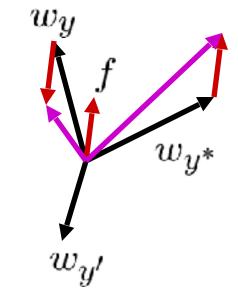
Recap: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

 $y = \arg \max_y w_y \cdot f(x)$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$



Perceptron Weights

- What is the final value of a weight w_v of a perceptron?
 - Can it be any real vector?
 - No! It's built by adding up inputs.

$$w_y = 0 + f(x_1) - f(x_5) + \dots$$

$$w_y = \sum_i \alpha_{i,y} f(x_i)$$

 Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)

$$\alpha_y = \langle \alpha_{1,y} \ \alpha_{2,y} \ \dots \ \alpha_{n,y} \rangle$$

Dual Perceptron

How to classify a new example x?

score
$$(y, x) = w_y \cdot f(x)$$

$$= \left(\sum_i \alpha_{i,y} f(x_i)\right) \cdot f(x)$$

$$= \sum_i \alpha_{i,y} \left(f(x_i) \cdot f(x)\right)$$

$$= \sum_i \alpha_{i,y} K(x_i, x)$$

 If someone tells us the value of K for each pair of examples, never need to build the weight vectors (or the feature vectors)!

Dual Perceptron

- Start with zero counts (alpha)
- Pick up training instances one by one
- Try to classify x_n ,

$$y = \arg\max_{y} \sum_{i} \alpha_{i,y} K(x_i, x_n)$$

- If correct, no change!
- If wrong: lower count of wrong class (for this instance), raise count of right class (for this instance)

$$\alpha_{y,n} = \alpha_{y,n} - 1$$

 $\alpha_{y^*,n} = \alpha_{y^*,n} + 1$
 $w_y = w_y - f(x_n)$
 $w_{y^*} = w_{y^*} + f(x_n)$

Kernelized Perceptron

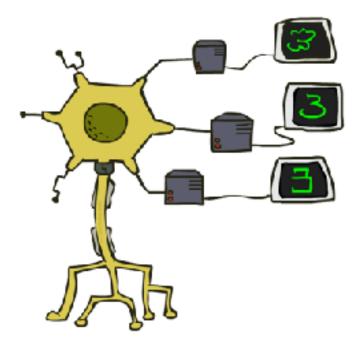
If we had a black box (kernel) K that told us the dot product of two examples x and x':

- Could work entirely with the dual representation
- No need to ever take dot products ("kernel trick")

$$score(y,x) = w_y \cdot f(x)$$

$$= \sum_{i} \alpha_{i,y} K(x_i, x)$$

- Like nearest neighbor work with black-box similarities
- Downside: slow if many examples get nonzero alpha

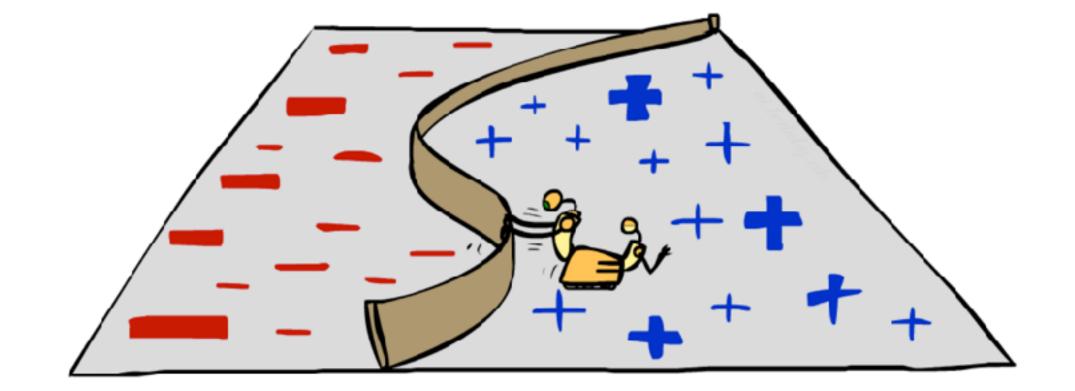


Kernels: Who Cares?

- So far: a very strange way of doing a very simple calculation
- "Kernel trick": we can substitute any* similarity function in place of the dot product
- Lets us learn new kinds of hypotheses

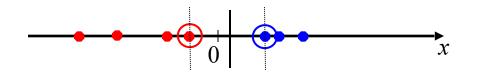
* Fine print: if your kernel doesn't satisfy certain technical requirements, lots of proofs break. E.g. convergence, mistake bounds. In practice, illegal kernels *sometimes* work (but not always).

Non-Linearity

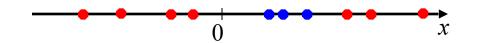


Non-Linear Separators

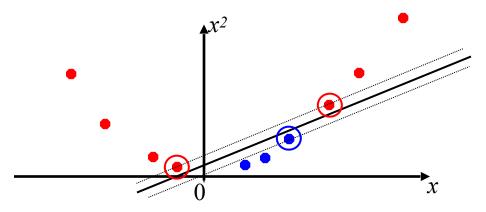
Data that is linearly separable works out great for linear decision rules:



But what are we going to do if the dataset is just too hard?



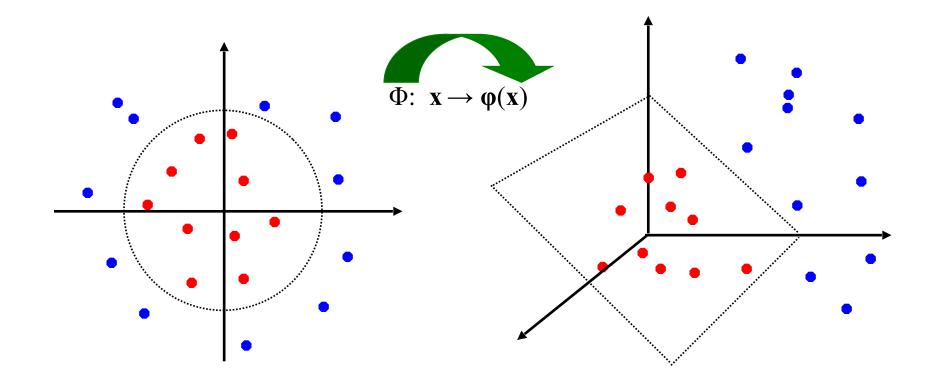
• How about... mapping data to a higher-dimensional space:



This and next few slides adapted from Ray Mooney, UT

Non-Linear Separators

 General idea: the original feature space can always be mapped to some higherdimensional feature space where the training set is separable:



Some Kernels

 Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back

• Linear kernel:
$$K(x, x') = x' \cdot x' = \sum_{i} x_i x'_i$$

Quadratic kernel:

$$K(x, x') = (x \cdot x' + 1)^2$$

$$=\sum_{i,j}x_ix_jx_i'x_j'+2\sum_ix_ix_i'+1$$

RBF: infinite dimensional representation

$$K(x, x') = \exp(-||x - x'||^2)$$

Discrete kernels: e.g. string kernels

Why Kernels?

- Can't you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
 - Yes, in principle, just compute them
 - No need to modify any algorithms
 - But, number of features can get large (or infinite)
 - Some kernels not as usefully thought of in their expanded representation, e.g. RBF kernels
- Kernels let us compute with these features implicitly
 - Example: implicit dot product in quadratic kernel takes much less space and time per dot product
 - Of course, there's the cost for using the pure dual algorithms: you need to compute the similarity to every training datum

Recap: Classification

Classification systems:

- Supervised learning
- Make a prediction given evidence
- We've seen several methods for this
- Useful when you have labeled data

Clustering

Clustering systems:

- Unsupervised learning
- Detect patterns in unlabeled data
 - E.g. group emails or search results
 - E.g. find categories of customers
 - E.g. detect anomalous program executions
- Useful when don't know what you're looking for
- Requires data, but no labels
- Often get gibberish

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

How many clusters?

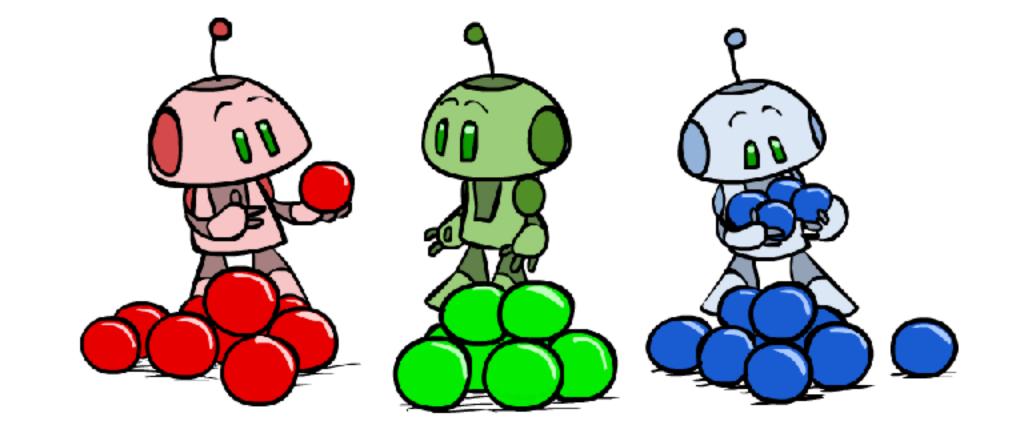
		<u>iClicker:</u>
\circ	$\circ \circ $	A: 2
\bigcirc	Ŭ	B: 3
	$\circ \circ $	C: 4
\circ \circ		D: 6

What could "similar" mean?

One option: small (squared) Euclidean distance

dist
$$(x, y) = (x - y)^{T} (x - y) = \sum_{i} (x_{i} - y_{i})^{2}$$

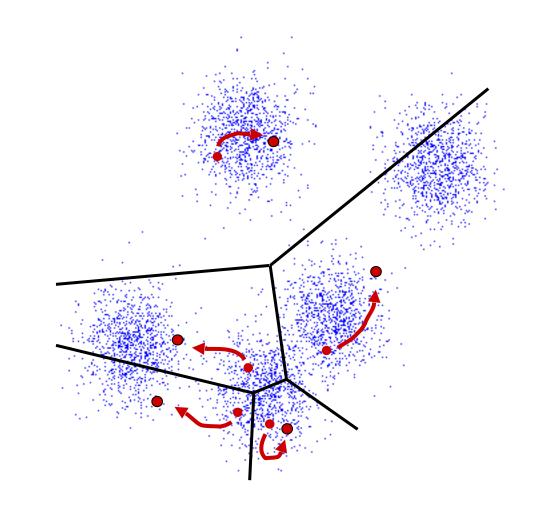
K-Means



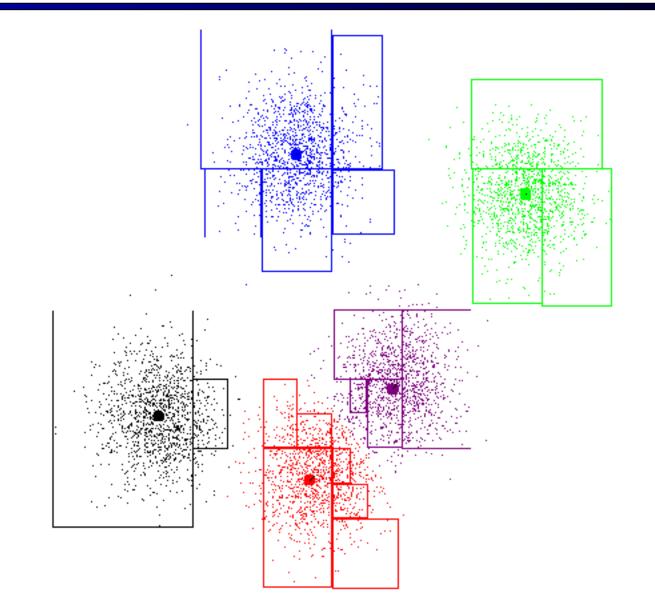
K-Means

An iterative clustering algorithm

- Pick K random points as cluster centers (means)
- Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
- Stop when no points' assignments change



K-Means Example

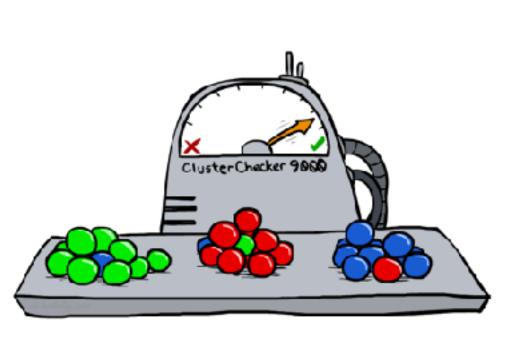


K-Means as Optimization

Consider the total distance to the means:

$$\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i})$$
points free means assignments

- Each iteration reduces phi
- Two stages each iteration:
 - Update assignments: fix means c, change assignments a
 - Update means: fix assignments a, change means c



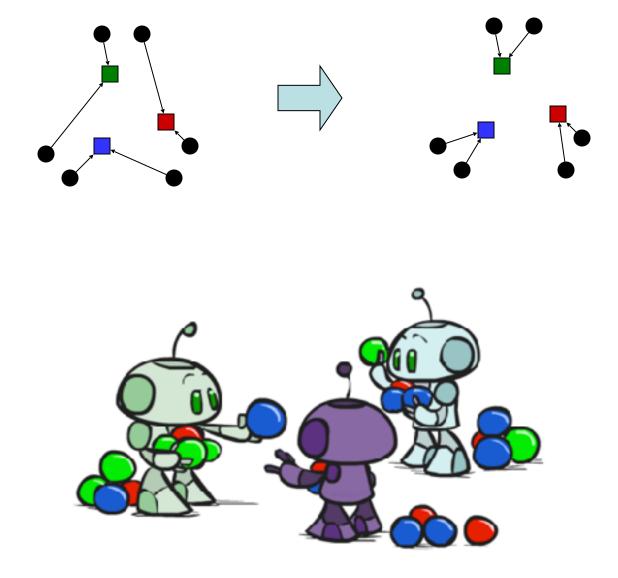
Phase I: Update Assignments

 For each point, re-assign to closest mean:

$$a_i = \underset{k}{\operatorname{argmin}} \operatorname{dist}(x_i, c_k)$$

 Can only decrease total distance phi!

$$\phi(\{x_i\},\{a_i\},\{c_k\}) = \sum_i \operatorname{dist}(x_i,c_{a_i})$$

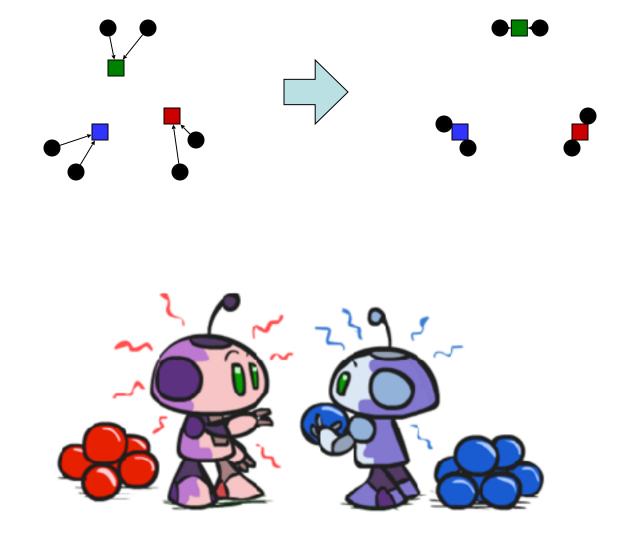


Phase II: Update Means

 Move each mean to the average of its assigned points:

$$c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i:a_i = k} x_i$$

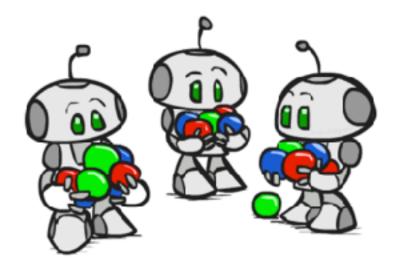
- Also can only decrease total distance... (Why?)
- Fun fact: the point y with minimum squared Euclidean distance to a set of points {x} is their mean



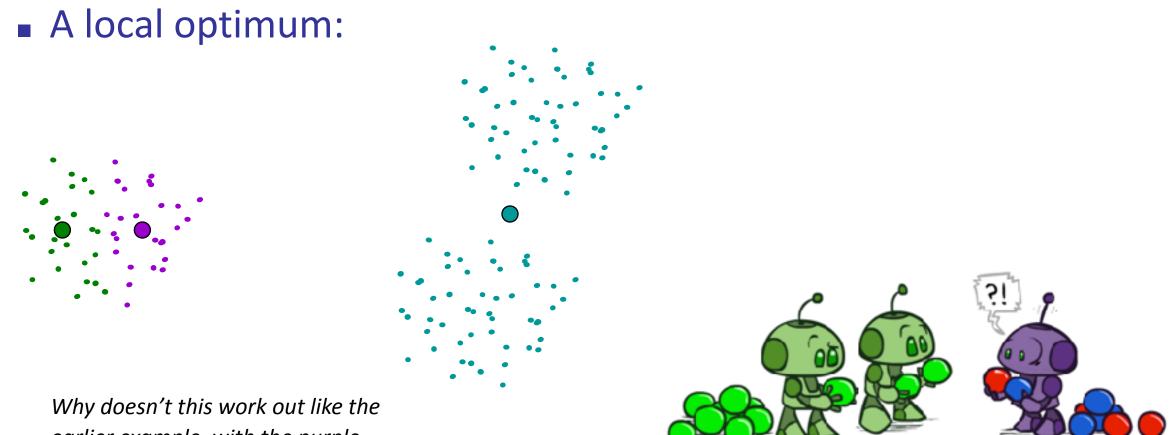
Initialization

- K-means is non-deterministic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?

 Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics



K-Means Getting Stuck

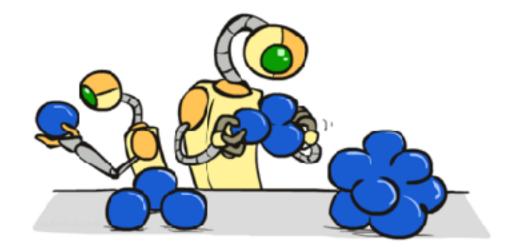


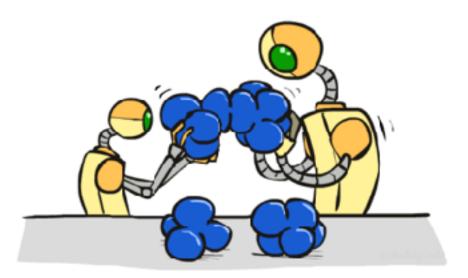
earlier example, with the purple taking over half the blue?

K-Means Questions

- Will K-means converge?
 - To a global optimum?
- Will it always find the true patterns in the data?
 - If the patterns are very very clear?
- Will it find something interesting?
- Do people ever use it?
- How many clusters to pick?

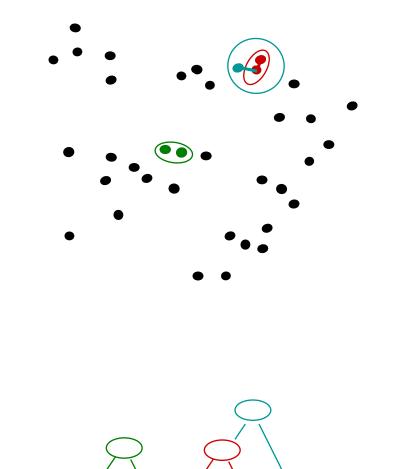
Agglomerative Clustering





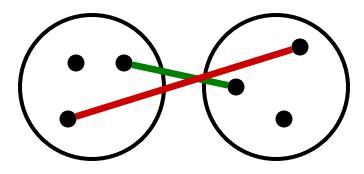
Agglomerative Clustering

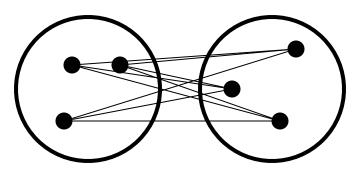
- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

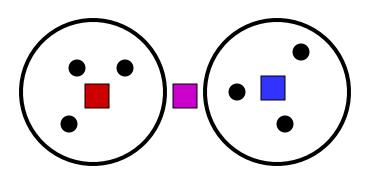


Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
- Many options
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Ward's method (min variance, like k-means)
- Different choices create different clustering behaviors







Example: Google News

