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Recap: Reasoning Over Time

▪ Markov models


▪ Hidden Markov models
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Recap: Passage of Time

▪ Assume we have current belief P(X | evidence to date)


▪ Then, after one time step passes:


▪ Basic idea: beliefs get “pushed” through the transitions

X2X1



Recap: Forward Algo - Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Recap: Observation

▪ Assume we have current belief P(X | previous evidence):


▪ Then, after evidence comes in: E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence


▪ Unlike passage of time, we have 
to renormalize




Recap: Forward Algo - Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Recap: The Forward Algorithm

▪ We are given evidence at each time and want to know


▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…



Recap: Online Filtering w/ Forward Algo
 

Elapse time: compute P( Xt | e1:t-1 ) 
 
 
 
Observe: compute P( Xt | e1:t )
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Particle Filtering



Particle Filtering
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▪ Filtering: approximate solution


▪ Sometimes |X| is too big to use exact inference

▪ |X| may be too big to even store B(X)

▪ E.g. X is continuous


▪ Solution: approximate inference

▪ Track samples of X, not all values

▪ Samples are called particles

▪ Time per step is linear in the number of samples

▪ But: number needed may be large

▪ In memory: list of particles, not states


▪ This is how robot localization works in practice


▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)

▪ Generally, N << |X|  (…but not in project 4)

▪ Storing map from X to counts would defeat the point


▪ P(x) approximated by number of particles with value x

▪ So, many x may have P(x) = 0! 

▪ More particles, more accuracy


▪ For now, all particles have a weight of 1


▪ Particle filtering uses three repeated steps:  


▪ Elapse time and observe (similar to exact filtering) and resample

Particles:
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Example: Elapse Time

Belief over possible

ghost positions at time t

Elapse Time

Policy: ghosts always move up

(or stay in place if already at top)

New belief at

time t+1

?



Example: Elapse Time

Belief over possible

ghost positions at time t

Elapse Time

Policy: ghosts always move up
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Example: Elapse Time

Belief over possible

ghost positions at time t

Elapse Time

Policy: ghosts always move up

(or stay in place if already at top)

New belief at

time t+1



Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model


▪ Sample frequencies reflect the transition probabilities


▪ Here, most samples move clockwise, but some move in 
another direction or stay in place


▪ This captures the passage of time

▪ If enough samples, close to exact values before and 

after (consistent)
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Example: Observe
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positions before observation
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Example: Observe

Belief over possible ghost
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▪ Slightly trickier:


▪ Don’t sample observation, fix it


▪ Similar to likelihood weighting, downweight 
samples based on the evidence


▪ As before, the probabilities don’t sum to one, since 
all have been downweighted

Particle Filtering: Observe

Particles:

    (3,2)  w=.9

    (2,3)  w=.2

    (3,2)  w=.9

    (3,1)  w=.4

    (3,3)  w=.4

    (3,2)  w=.9

    (1,3)  w=.1

    (2,3)  w=.2

    (3,2)  w=.9

    (2,2)  w=.4

Particles:

    (3,2)

    (2,3)

    (3,2)   

    (3,1)

    (3,3)

    (3,2)

    (1,3)

    (2,3)

    (3,2)

    (2,2)



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample


▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)


▪ This essentially renormalizes the distribution


▪ Now the update is complete for this time step, 
continue with the next one

Particles:

    (3,2)  w=.9

    (2,3)  w=.2

    (3,2)  w=.9

    (3,1)  w=.4

    (3,3)  w=.4

    (3,2)  w=.9

    (1,3)  w=.1

    (2,3)  w=.2

    (3,2)  w=.9

    (2,2)  w=.4

(New) Particles:
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    (3,3)

    (3,2)

    (1,3)

    (2,3)

    (3,2)

    (3,2)



Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles:

    (3,3)

    (2,3)

    (3,3)   

    (3,2)

    (3,3)

    (3,2)

    (1,2)

    (3,3)

    (3,3)

    (2,3)

Elapse Weight Resample

Particles:

    (3,2)

    (2,3)

    (3,2)   

    (3,1)

    (3,3)

    (3,2)

    (1,3)

    (2,3)

    (3,2)

    (2,2)

     Particles:

    (3,2)  w=.9

    (2,3)  w=.2

    (3,2)  w=.9

    (3,1)  w=.4

    (3,3)  w=.4

    (3,2)  w=.9

    (1,3)  w=.1

    (2,3)  w=.2

    (3,2)  w=.9

    (2,2)  w=.4

(New) Particles:

    (3,2)

    (2,2)

    (3,2)   

    (2,3)

    (3,3)

    (3,2)

    (1,3)

    (2,3)

    (3,2)

    (3,2)



Moderate Number of Particles



One Particle



Huge Number of Particles



Robot Localization

▪ In robot localization:

▪ We know the map, but not the robot’s position

▪ Observations may be vectors of range finder readings

▪ State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)

▪ Particle filtering is a main technique



Particle Filter Localization (Sonar)



Robot Mapping

▪ SLAM: Simultaneous Localization And Mapping

▪ We do not know the map or our location

▪ State consists of position AND map!

▪ Main techniques: Kalman filtering (Gaussian HMMs) 

and particle methods

DP-SLAM, Ron Parr



Particle Filter SLAM – Video 1



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

▪ We want to track multiple variables over time, using multiple 
sources of evidence


▪ Idea: Repeat a fixed Bayes net structure at each time


▪ Variables from time t can condition on those from t-1


▪ Dynamic Bayes nets are a generalization of HMMs
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Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets


▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is computed


▪ Online belief updates: Eliminate all variables from the previous time step; store factors for current 
time only
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DBN Particle Filters

▪ A particle is a complete sample for a time step


▪ Initialize: Generate prior samples for the t=1 Bayes net


▪ Example particle: G1
a = (3,3) G1

b = (5,3) 


▪ Elapse time: Sample a successor for each particle 


▪ Example successor: G2
a = (2,3) G2

b = (6,3)


▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample


▪ Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 


▪ Resample: Select samples (tuples of values) in proportion to their likelihood (weight)



Most Likely Explanation



HMMs: MLE Queries

▪ HMMs defined by

▪ States X

▪ Observations E

▪ Initial distribution:

▪ Transitions:

▪ Emissions:


▪ New query: most likely explanation:


▪ New method: the Viterbi algorithm


▪ Question: Why not just apply filtering and predict most 
likely value of each variable separately?
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State Trellis

▪ State trellis: graph of states and transitions over time


▪ Each arc represents some transition


▪ Each arc has weight


▪ Each path is a sequence of states


▪ The product of weights on a path is that sequence’s probability along with the evidence


▪ Forward algorithm computes sums of all paths to each node, Viterbi computes best paths


▪ Exponentially many paths, but dynamic programming can find best path in linear time!
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Forward / Viterbi Algorithms
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Speech Recognition



Speech Recognition in Action



Digitizing Speech



Speech waveforms

▪ Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/
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Spectral Analysis

▪ Frequency gives pitch; amplitude gives volume

▪ Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)


▪ Fourier transform of wave displayed as a spectrogram

▪ Darkness indicates energy at each frequency
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Human ear figure: depion.blogspot.com

http://2.bp.blogspot.com/-9dwlRNvV338/TfyK_J8WGZI/AAAAAAAAARc/PKOCa_pwY4Y/s1600/the-human-ear.gif


Acoustic Feature Sequence

▪ Time slices are translated into acoustic feature vectors (~39 real numbers per 
slice)


▪ These are the observations E, now we need the hidden states X
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Speech State Space

▪ HMM Specification

▪ P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind 

of sound)

▪ P(X|X’) encodes how sounds and words can be strung together 


▪ State Space

▪ We will have one state for each sound in each word

▪ Mostly, states advance sound by sound

▪ Build a little state graph for each word and chain them together to form the state 

space X



States in a Word



Transitions with a Bigram Model

198015222 the first

194623024 the same

168504105 the following

158562063 the world

…

14112454 the door

-----------------------------------

23135851162 the *
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Decoding (Viterbi)

▪ Finding the words given the acoustics is an HMM inference problem


▪ Which state sequence x1:T is most likely given the evidence e1:T?


▪ From the sequence x, we can simply read off the words


