CS 383: Artificial Intelligence Particle Filters and Applications of HMMs

Recap: Reasoning Over Time

- Markov models

$$
P\left(X_{1}\right) \quad P\left(X \mid X_{-1}\right)
$$

- Hidden Markov models

$$
P(E \mid X)
$$

X	E	P
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Recap: Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
P\left(X_{t} \mid e_{1: l}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Basic idea: beliefs get "pushed" through the transitions

Recap: Forward Algo - Passage of Time

- As time passes, uncertainty "accumulates"

<0. 31	40.01	<0, 01	co.c:	<0, 31	80.01
<0. 21	50.01	<0. 01	co.c:	<0. 21	¢0.01
<0. 01	c0.01	1.00	co. 01	<0. 01	60.01
<0. 31	80.01	<0. 01	40.cı	<0.31	40.01

(Transition model: ghosts usually go clockwise)

Recap: Observation

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence $):$

$$
P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto X_{t+1} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Recap: Forward Algo - Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Recap: The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

We can normalize as we go if we want to have $P(x \mid e)$ at each time step, or just once at the end...

Recap: Online Filtering w/ Forward Algo

Elapse time: compute $P\left(X_{t} \mid e_{1: t-1}\right)$

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

Observe: compute $P\left(X_{t} \mid e_{1: t}\right)$

$$
P\left(x_{t} \mid e_{1: t}\right) \propto P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| <0.01 | <0.01 | 0.06 | <0.01 | <0.01 | <0.01 |
| <0.01 | 0.76 | 0.06 | 0.06 | <0.01 | <0.01 |
| <0.01 | <0.01 | 0.06 | <0.01 | <0.01 | <0.01 |

Belief: <P(rain), P(sun)>

$$
P\left(X_{1}\right) \quad<0.5,0.5>\quad \text { Prior on } X_{1}
$$

$P\left(X_{1} \mid E_{1}=\right.$ umbrella $) \quad<0.82,0.18>\quad$ Observe
$P\left(X_{2} \mid E_{1}=\right.$ umbrella $) \quad<0.63,0.37>\quad$ Elapse time
$P\left(X_{2} \mid E_{1}=u m b, E_{2}=u m b\right) \quad<0.88,0.12>\quad$ Observe

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $\mathrm{N} \ll|\mathrm{X}|$ (...but not in project 4)
- Storing map from X to counts would defeat the point
- $P(x)$ approximated by number of particles with value x

- So, many x may have $P(x)=0$!

Particles:

- More particles, more accuracy
- For now, all particles have a weight of 1
- Particle filtering uses three repeated steps:
- Elapse time and observe (similar to exact filtering) and resample

Example: Elapse Time

Elapse Time

Policy: ghosts always move up
 (or stay in place if already at top)

Belief over possible ghost positions at time \mathbf{t}

New belief at time $\mathbf{t + 1}$

Example: Elapse Time

iClicker:

Elapse Time

B

Belief over possible ghost positions at time \mathbf{t}

Example: Elapse Time

Belief over possible ghost positions at time \mathbf{t}

Elapse Time

Policy: ghosts always move up (or stay in place if already at top)

New belief at time t+1

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- Sample frequencies reflect the transition probabilities

Particles:

- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Example: Observe

Belief over possible ghost positions before observation

Observation and evidence likelihoods $p(e \mid X)$

New belief after observation

Example: Observe

Belief over possible ghost positions before observation

0.5	0.4	0.3
0.4	0.3	0.2
0.3	0.2	0.1

Observation and evidence
likelihoods $p(e \mid X)$

New belief after observation

Particle Filtering: Observe

- Slightly trickier:
- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- As before, the probabilities don't sum to one, since all have been downweighted

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This essentially renormalizes the distribution
- Now the update is complete for this time step, continue with the next one
$(2,3) w=.2$
$(3,2) w=.9$
$(3,1) w=.4$
$(3,3) w=.4$
$(3,2) w=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) w=.9$
$(2,2) w=.4$

(New) Particles:

Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Elapse

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Weight

Particles:
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(2,2)$

Particles:
$(3,2) w=.9$
$(2,3) \quad w=.2$
$(3,2) \quad w=.9$
$(3,1) \quad w=.4$
$(3,3) \quad w=.4$
$(3,2) \quad w=.9$
$(1,3) w=.1$
$(2,3) \quad w=.2$
$(3,2) w=.9$
$(2,2) \quad w=.4$

Resample

(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Moderate Number of Particles

One Particle

Huge Number of Particles

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique

Global localization with

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Particle Filter SLAM - Video 1
"

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P\left(X_{\mathrm{T}} \mid \mathrm{e}_{1 \cdot \mathrm{~T}}\right)$ is computed

- Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net
. Example particle: $\mathbf{G}_{\mathbf{1}} \mathbf{a}=(3,3) \mathbf{G}_{\mathbf{1}} \mathbf{b}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample - Likelihood: $P\left(\mathbf{E}_{1} \mathbf{a} \mid \mathbf{G}_{\mathbf{1}} \mathbf{a}\right) * P\left(\mathbf{E}_{\mathbf{1}} \mathbf{b} \mid \mathbf{G}_{\mathbf{1}} \mathbf{b}\right)$
- Resample: Select samples (tuples of values) in proportion to their likelihood (weight)

Most Likely Explanation

HMMs: MLE Queries

- HMMs defined by
- States X
- Observations E
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
- Emissions:

$$
P\left(X \mid X_{-1}\right)
$$

$$
P(E \mid X)
$$

- New query: most likely explanation: $\underset{x 1: t}{\arg \max } P\left(x_{1: t} \mid e_{1: t}\right)$
- New method: the Viterbi algorithm
- Question: Why not just apply filtering and predict most likely value of each variable separately?

State Trellis

- State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of all paths to each node, Viterbi computes best paths
- Exponentially many paths, but dynamic programming can find best path in linear time!

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

Viterbi Algorithm (Max)

$$
\begin{aligned}
f_{t}\left[x_{t}\right] & =P\left(x_{t}, e_{1: t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) f_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

$$
m_{t}\left[x_{t}\right]=\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right)
$$

$$
=P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]
$$

Speech Recognition

Speech Recognition in Action

Digitizing Speech

Speech waveforms

- Speech input is an acoustic waveform

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
- Sampling at $\sim 8 \mathrm{kHz}$ (phone), $\sim 16 \mathrm{kHz}$ (mic) (kHz=1000 cycles/sec)

- Fourier transform of wave displayed as a spectrogram
- Darkness indicates energy at each frequency

Acoustic Feature Sequence

- Time slices are translated into acoustic feature vectors (~39 real numbers per slice)

- These are the observations E, now we need the hidden states X

Speech State Space

- HMM Specification
- $P(E \mid X)$ encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- $P\left(X \mid X^{\prime}\right)$ encodes how sounds and words can be strung together
- State Space
- We will have one state for each sound in each word
- Mostly, states advance sound by sound
- Build a little state graph for each word and chain them together to form the state space X

States in a Word

Word Model

Transitions with a Bigram Model

¢	198015222 the first
	194623024 the same
	168504105 the following
	158562063 the world
	...
	14112454 the door
	23135851162 the *

$$
\begin{aligned}
\hat{P}(\text { door } \mid \text { the }) & =\frac{14112454}{23135851162} \\
& =0.0006
\end{aligned}
$$

Decoding (Viterbi)

- Finding the words given the acoustics is an HMM inference problem
- Which state sequence $x_{1: T}$ is most likely given the evidence $e_{1: T}$?

$$
x_{1: T}^{*}=\underset{x_{1: T}}{\arg \max } P\left(x_{1: T} \mid e_{1: T}\right)=\underset{x_{1: T}}{\arg \max _{1: T}} P\left(x_{1: T}\right)
$$

- From the sequence x, we can simply read off the words

