
CS 383: Artificial Intelligence 
Particle Filters and Applications of HMMs

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Prof. Scott Niekum — UMass Amherst

Recap: Reasoning Over Time

▪ Markov models

▪ Hidden Markov models

X2X1 X3 X4 rain sun

0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P

rain umbrella 0.9

rain no umbrella 0.1

sun umbrella 0.2

sun no umbrella 0.8

Recap: Passage of Time

▪ Assume we have current belief P(X | evidence to date)

▪ Then, after one time step passes:

▪ Basic idea: beliefs get “pushed” through the transitions

X2X1

Recap: Forward Algo - Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)

Recap: Observation

▪ Assume we have current belief P(X | previous evidence):

▪ Then, after evidence comes in: E1

X1

▪ Basic idea: beliefs “reweighted”
by likelihood of evidence

▪ Unlike passage of time, we have
to renormalize

Recap: Forward Algo - Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation

Recap: The Forward Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following updates
We can normalize as we go if we
want to have P(x|e) at each time

step, or just once at the end…

Recap: Online Filtering w/ Forward Algo
 

Elapse time: compute P(Xt | e1:t-1) 
 
 
 
Observe: compute P(Xt | e1:t)

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe

Particle Filtering

Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference

▪ |X| may be too big to even store B(X)

▪ E.g. X is continuous

▪ Solution: approximate inference

▪ Track samples of X, not all values

▪ Samples are called particles

▪ Time per step is linear in the number of samples

▪ But: number needed may be large

▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample

Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)

▪ Generally, N << |X| (…but not in project 4)

▪ Storing map from X to counts would defeat the point

▪ P(x) approximated by number of particles with value x

▪ So, many x may have P(x) = 0!

▪ More particles, more accuracy

▪ For now, all particles have a weight of 1

▪ Particle filtering uses three repeated steps:

▪ Elapse time and observe (similar to exact filtering) and resample

Particles:

 (3,3)

 (2,3)

 (3,3)

 (3,2)

 (3,3)

 (3,2)

 (1,2)

 (3,3)

 (3,3)

 (2,3)

Example: Elapse Time

Belief over possible

ghost positions at time t

Elapse Time

Policy: ghosts always move up

(or stay in place if already at top)

New belief at

time t+1

?

Example: Elapse Time

Belief over possible

ghost positions at time t

Elapse Time

Policy: ghosts always move up

(or stay in place if already at top)

iClicker:

A

B

C

Example: Elapse Time

Belief over possible

ghost positions at time t

Elapse Time

Policy: ghosts always move up

(or stay in place if already at top)

New belief at

time t+1

Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next
position from the transition model

▪ Sample frequencies reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in
another direction or stay in place

▪ This captures the passage of time

▪ If enough samples, close to exact values before and

after (consistent)

Particles:

 (3,3)

 (2,3)

 (3,3)

 (3,2)

 (3,3)

 (3,2)

 (1,2)

 (3,3)

 (3,3)

 (2,3)

Particles:

 (3,2)

 (2,3)

 (3,2)

 (3,1)

 (3,3)

 (3,2)

 (1,3)

 (2,3)

 (3,2)

 (2,2)

Example: Observe

Belief over possible ghost

positions before observation

?+

Observation and evidence

likelihoods p(e | X)

0.5 0.4

0.30.4

0.3 0.2

0.3

0.2

0.1

New belief after

observation

Example: Observe

Belief over possible ghost

positions before observation

+

Observation and evidence

likelihoods p(e | X)

0.5 0.4

0.30.4

0.3 0.2

0.3

0.2

0.1

New belief after

observation

+

0.4

0.1

▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight
samples based on the evidence

▪ As before, the probabilities don’t sum to one, since
all have been downweighted

Particle Filtering: Observe

Particles:

 (3,2) w=.9

 (2,3) w=.2

 (3,2) w=.9

 (3,1) w=.4

 (3,3) w=.4

 (3,2) w=.9

 (1,3) w=.1

 (2,3) w=.2

 (3,2) w=.9

 (2,2) w=.4

Particles:

 (3,2)

 (2,3)

 (3,2)

 (3,1)

 (3,3)

 (3,2)

 (1,3)

 (2,3)

 (3,2)

 (2,2)

Particle Filtering: Resample

▪ Rather than tracking weighted samples, we
resample

▪ N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

▪ This essentially renormalizes the distribution

▪ Now the update is complete for this time step,
continue with the next one

Particles:

 (3,2) w=.9

 (2,3) w=.2

 (3,2) w=.9

 (3,1) w=.4

 (3,3) w=.4

 (3,2) w=.9

 (1,3) w=.1

 (2,3) w=.2

 (3,2) w=.9

 (2,2) w=.4

(New) Particles:

 (3,2)

 (2,2)

 (3,2)

 (2,3)

 (3,3)

 (3,2)

 (1,3)

 (2,3)

 (3,2)

 (3,2)

Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles:

 (3,3)

 (2,3)

 (3,3)

 (3,2)

 (3,3)

 (3,2)

 (1,2)

 (3,3)

 (3,3)

 (2,3)

Elapse Weight Resample

Particles:

 (3,2)

 (2,3)

 (3,2)

 (3,1)

 (3,3)

 (3,2)

 (1,3)

 (2,3)

 (3,2)

 (2,2)

 Particles:

 (3,2) w=.9

 (2,3) w=.2

 (3,2) w=.9

 (3,1) w=.4

 (3,3) w=.4

 (3,2) w=.9

 (1,3) w=.1

 (2,3) w=.2

 (3,2) w=.9

 (2,2) w=.4

(New) Particles:

 (3,2)

 (2,2)

 (3,2)

 (2,3)

 (3,3)

 (3,2)

 (1,3)

 (2,3)

 (3,2)

 (3,2)

Moderate Number of Particles

One Particle

Huge Number of Particles

Robot Localization

▪ In robot localization:

▪ We know the map, but not the robot’s position

▪ Observations may be vectors of range finder readings

▪ State space and readings are typically continuous (works

basically like a very fine grid) and so we cannot store B(X)

▪ Particle filtering is a main technique

Particle Filter Localization (Sonar)

Robot Mapping

▪ SLAM: Simultaneous Localization And Mapping

▪ We do not know the map or our location

▪ State consists of position AND map!

▪ Main techniques: Kalman filtering (Gaussian HMMs)

and particle methods

DP-SLAM, Ron Parr

Particle Filter SLAM – Video 1

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

▪ We want to track multiple variables over time, using multiple
sources of evidence

▪ Idea: Repeat a fixed Bayes net structure at each time

▪ Variables from time t can condition on those from t-1

▪ Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3

Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets

▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is computed

▪ Online belief updates: Eliminate all variables from the previous time step; store factors for current
time only

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
b

t =1 t =2 t =3

G3
b

DBN Particle Filters

▪ A particle is a complete sample for a time step

▪ Initialize: Generate prior samples for the t=1 Bayes net

▪ Example particle: G1
a = (3,3) G1

b = (5,3)

▪ Elapse time: Sample a successor for each particle

▪ Example successor: G2
a = (2,3) G2

b = (6,3)

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample

▪ Likelihood: P(E1
a |G1

a) * P(E1
b |G1

b)

▪ Resample: Select samples (tuples of values) in proportion to their likelihood (weight)

Most Likely Explanation

HMMs: MLE Queries

▪ HMMs defined by

▪ States X

▪ Observations E

▪ Initial distribution:

▪ Transitions:

▪ Emissions:

▪ New query: most likely explanation:

▪ New method: the Viterbi algorithm

▪ Question: Why not just apply filtering and predict most
likely value of each variable separately?

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

State Trellis

▪ State trellis: graph of states and transitions over time

▪ Each arc represents some transition

▪ Each arc has weight

▪ Each path is a sequence of states

▪ The product of weights on a path is that sequence’s probability along with the evidence

▪ Forward algorithm computes sums of all paths to each node, Viterbi computes best paths

▪ Exponentially many paths, but dynamic programming can find best path in linear time!

sun

rain

sun

rain

sun

rain

sun

rain

Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)

Speech Recognition

Speech Recognition in Action

Digitizing Speech

Speech waveforms

▪ Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

 s p ee ch l a b

Spectral Analysis

▪ Frequency gives pitch; amplitude gives volume

▪ Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)

▪ Fourier transform of wave displayed as a spectrogram

▪ Darkness indicates energy at each frequency

 s p ee ch l a b

fr
eq

ue
nc

y
am

pl
itu

de

Human ear figure: depion.blogspot.com

http://2.bp.blogspot.com/-9dwlRNvV338/TfyK_J8WGZI/AAAAAAAAARc/PKOCa_pwY4Y/s1600/the-human-ear.gif

Acoustic Feature Sequence

▪ Time slices are translated into acoustic feature vectors (~39 real numbers per
slice)

▪ These are the observations E, now we need the hidden states X

fr
eq

ue
nc

y

……………………………………………..e12e13e14e15e16………..

Speech State Space

▪ HMM Specification

▪ P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind

of sound)

▪ P(X|X’) encodes how sounds and words can be strung together

▪ State Space

▪ We will have one state for each sound in each word

▪ Mostly, states advance sound by sound

▪ Build a little state graph for each word and chain them together to form the state

space X

States in a Word

Transitions with a Bigram Model

198015222 the first

194623024 the same

168504105 the following

158562063 the world

…

14112454 the door

23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s

Decoding (Viterbi)

▪ Finding the words given the acoustics is an HMM inference problem

▪ Which state sequence x1:T is most likely given the evidence e1:T?

▪ From the sequence x, we can simply read off the words

