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Recap: Reasoning Over Time

▪ Markov models 

▪ Hidden Markov models
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Recap: Passage of Time

▪ Assume we have current belief P(X | evidence to date) 

▪ Then, after one time step passes: 

▪ Basic idea: beliefs get “pushed” through the transitions

X2X1



Recap: Forward Algo - Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Recap: Observation

▪ Assume we have current belief P(X | previous evidence): 

▪ Then, after evidence comes in: E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence 

▪ Unlike passage of time, we have 
to renormalize 



Recap: Forward Algo - Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Recap: The Forward Algorithm

▪ We are given evidence at each time and want to know 

▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…



Recap: Online Filtering w/ Forward Algo
 

Elapse time: compute P( Xt | e1:t-1 ) 
 
 
 
Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe



Particle Filtering



Particle Filtering
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▪ Filtering: approximate solution 

▪ Sometimes |X| is too big to use exact inference 
▪ |X| may be too big to even store B(X) 
▪ E.g. X is continuous 

▪ Solution: approximate inference 
▪ Track samples of X, not all values 
▪ Samples are called particles 
▪ Time per step is linear in the number of samples 
▪ But: number needed may be large 
▪ In memory: list of particles, not states 

▪ This is how robot localization works in practice 

▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples) 
▪ Generally, N << |X|  (…but not in project 4) 
▪ Storing map from X to counts would defeat the point 

▪ P(x) approximated by number of particles with value x 
▪ So, many x may have P(x) = 0!  
▪ More particles, more accuracy 

▪ For now, all particles have a weight of 1 

▪ Particle filtering uses three repeated steps:   

▪ Elapse time and observe (similar to exact filtering) and resample

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)



Example: Elapse Time

Belief over possible 
ghost positions at time t

Elapse Time

Policy: ghosts always move up 
(or stay in place if already at top)

New belief at 
time t+1

?



Example: Elapse Time

Belief over possible 
ghost positions at time t

Elapse Time

Policy: ghosts always move up 
(or stay in place if already at top)

iClicker:

A
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Example: Elapse Time

Belief over possible 
ghost positions at time t

Elapse Time

Policy: ghosts always move up 
(or stay in place if already at top)

New belief at 
time t+1



Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model 

▪ Sample frequencies reflect the transition probabilities 

▪ Here, most samples move clockwise, but some move in 
another direction or stay in place 

▪ This captures the passage of time 
▪ If enough samples, close to exact values before and 

after (consistent) 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)



Example: Observe

Belief over possible ghost 
positions before observation

?+

Observation and evidence 
likelihoods p(e | X)
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New belief after 
observation



Example: Observe

Belief over possible ghost 
positions before observation

+

Observation and evidence 
likelihoods p(e | X)
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▪ Slightly trickier: 

▪ Don’t sample observation, fix it 

▪ Similar to likelihood weighting, downweight 
samples based on the evidence 

▪ As before, the probabilities don’t sum to one, since 
all have been downweighted

Particle Filtering: Observe

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample 

▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement) 

▪ This essentially renormalizes the distribution 

▪ Now the update is complete for this time step, 
continue with the next one

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2)



Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Elapse Weight Resample

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)

     Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2)



Moderate Number of Particles



One Particle



Huge Number of Particles



Robot Localization

▪ In robot localization: 
▪ We know the map, but not the robot’s position 
▪ Observations may be vectors of range finder readings 
▪ State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X) 
▪ Particle filtering is a main technique



Particle Filter Localization (Sonar)



Robot Mapping

▪ SLAM: Simultaneous Localization And Mapping 
▪ We do not know the map or our location 
▪ State consists of position AND map! 
▪ Main techniques: Kalman filtering (Gaussian HMMs) 

and particle methods

DP-SLAM, Ron Parr



Particle Filter SLAM – Video 1



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

▪ We want to track multiple variables over time, using multiple 
sources of evidence 

▪ Idea: Repeat a fixed Bayes net structure at each time 

▪ Variables from time t can condition on those from t-1 

▪ Dynamic Bayes nets are a generalization of HMMs
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Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets 

▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is computed 

▪ Online belief updates: Eliminate all variables from the previous time step; store factors for current 
time only
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DBN Particle Filters

▪ A particle is a complete sample for a time step 

▪ Initialize: Generate prior samples for the t=1 Bayes net 

▪ Example particle: G1
a = (3,3) G1

b = (5,3)  

▪ Elapse time: Sample a successor for each particle  

▪ Example successor: G2
a = (2,3) G2

b = (6,3) 

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample 

▪ Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b )  

▪ Resample: Select samples (tuples of values) in proportion to their likelihood (weight)



Most Likely Explanation



HMMs: MLE Queries

▪ HMMs defined by 
▪ States X 
▪ Observations E 
▪ Initial distribution: 
▪ Transitions: 
▪ Emissions: 

▪ New query: most likely explanation: 

▪ New method: the Viterbi algorithm 

▪ Question: Why not just apply filtering and predict most 
likely value of each variable separately?
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State Trellis

▪ State trellis: graph of states and transitions over time 

▪ Each arc represents some transition 

▪ Each arc has weight 

▪ Each path is a sequence of states 

▪ The product of weights on a path is that sequence’s probability along with the evidence 

▪ Forward algorithm computes sums of all paths to each node, Viterbi computes best paths 

▪ Exponentially many paths, but dynamic programming can find best path in linear time!

sun

rain

sun
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sun
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Forward / Viterbi Algorithms

sun

rain

sun
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sun
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Forward Algorithm (Sum) Viterbi Algorithm (Max)



Speech Recognition



Speech Recognition in Action



Digitizing Speech



Speech waveforms

▪ Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/
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Spectral Analysis

▪ Frequency gives pitch; amplitude gives volume 
▪ Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec) 

▪ Fourier transform of wave displayed as a spectrogram 
▪ Darkness indicates energy at each frequency
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Human ear figure: depion.blogspot.com

http://2.bp.blogspot.com/-9dwlRNvV338/TfyK_J8WGZI/AAAAAAAAARc/PKOCa_pwY4Y/s1600/the-human-ear.gif


Acoustic Feature Sequence

▪ Time slices are translated into acoustic feature vectors (~39 real numbers per 
slice) 

▪ These are the observations E, now we need the hidden states X
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Speech State Space

▪ HMM Specification 
▪ P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind 

of sound) 
▪ P(X|X’) encodes how sounds and words can be strung together  

▪ State Space 
▪ We will have one state for each sound in each word 
▪ Mostly, states advance sound by sound 
▪ Build a little state graph for each word and chain them together to form the state 

space X



States in a Word



Transitions with a Bigram Model

198015222 the first 
194623024 the same 
168504105 the following 
158562063 the world 
… 
14112454 the door 
----------------------------------- 
23135851162 the *
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Decoding (Viterbi)

▪ Finding the words given the acoustics is an HMM inference problem 

▪ Which state sequence x1:T is most likely given the evidence e1:T? 

▪ From the sequence x, we can simply read off the words


