CS 383: Artificial Intelligence Particle Filters and Applications of HMMs

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Reasoning Over Time

Markov models

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow - - \rightarrow$$

 $P(X_1) \qquad P(X|X_{-1})$

Hidden Markov models

P(E|X)

Х	E	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Recap: Passage of Time

Assume we have current belief P(X | evidence to date)

 $P(X_t|e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$

Basic idea: beliefs get "pushed" through the transitions

Recap: Forward Algo - Passage of Time

As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

Recap: Observation

Assume we have current belief P(X | previous evidence):

 $P(X_{t+1}|e_{1:t})$

• Then, after evidence comes in:

$$\frac{P(X_{t+1}|e_{1:t+1})}{\propto_{X_{t+1}}} = \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(e_{t+1}|e_{1:t})} \\ \propto_{X_{t+1}} \frac{P(X_{t+1}, e_{t+1}|e_{1:t})}{P(X_{t+1}, e_{t+1}|e_{1:t})}$$

- $= P(e_{t+1}|e_{1:t}, X_{t+1}) P(X_{t+1}|e_{1:t})$
- $= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$
- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Recap: Forward Algo - Observation

• As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	(B)	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

 $B(X) \propto P(e|X)B'(X)$

Recap: The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t | e_{1:t})$$

Recap: Online Filtering w/ Forward Algo

Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute P($X_t | e_{1:t}$)

 $P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

Observe

Observe

Elapse time

Belief: <p(rain), p(sur<="" th=""><th>ı)></th></p(rain),>	ı)>
--	-----

$P(X_1)$	<0.5, 0.5>	Prior on X ₁
----------	------------	-------------------------

 $P(X_1 \mid E_1 = umbrella)$ <0.82, 0.18>

 $P(X_2 \mid E_1 = umbrella)$ <0.63, 0.37>

 $P(X_2 \mid E_1 = umb, E_2 = umb)$ <0.88, 0.12>

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

Our representation of P(X) is now a list of N particles (samples)

- Generally, N << |X| (...but not in project 4)
- Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1
- Particle filtering uses three repeated steps:
 - Elapse time and observe (similar to exact filtering) and resample

	•	
•		•••

Particles:

(3,3) (2,3) (3,3) (3,2)

(3,3) (3,2) (1,2) (3,3) (3,3)

(2,3)

Example: Elapse Time

Belief over possible ghost positions at time **t**

New belief at time **t+1**

Example: Elapse Time

Example: Elapse Time

Elapse Time

Policy: ghosts always move up (or stay in place if already at top)

Belief over possible ghost positions at time **t**

New belief at time **t+1**

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- Sample frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place

This captures the passage of time

 If enough samples, close to exact values before and after (consistent)

Particles:

(3,3) (2,3) (3,3) (3,2)

(3,3) (3,2) (1,2) (3,3)

(3,3) (2,3)

Particles: (3,2) (2,3) (3,2)

(3,1)

(3,3) (3,2)

(1,3)

(2,3) (3,2) (2,2)

Example: Observe

Belief over possible ghost positions before observation

Observation and evidence likelihoods p(e | X) New belief after observation

Example: Observe

Belief over possible ghost positions before observation

Observation and evidence likelihoods p(e | X) New belief after observation

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This essentially renormalizes the distribution
- Now the update is complete for this time step, continue with the next one

(New) Particles:	
(3,2)	
(2,2)	
(3,2)	
(2,3)	
(3,3)	
(3,2)	
(1,3)	
(2,3)	
(3,2)	
(3,2)	

Particles:

(3,2) w=.9

(2,3) w=.2

(3,2) w=.9 (3,1) w=.4

(3,3) w=.4

(3,2) w=.9 (1,3) w=.1

(2,3) w=.2 (3,2) w=.9 (2,2) w=.4

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Moderate Number of Particles

	<0.01	0.04	0.01	0.01	<0.01	0.04	0.03	0.02	0.04	0.02	URLETTS MERAINIDG: 1 SUSTS REMAINING: 1 SUTER: 0	
	<0.01	0.02	<0.01	0.01	0.02	<0.01	0.02	0.01	0.01	0.02	HESSACE3 :	
	0.03	0.06	0.01	0.02	<0.01	0.04	0.01	<0.01	0.01	0.01	BUST TIME+1	
	<0.01	0.01	0.01	0.01	0.04	0.03	0.03	<0.01	0.01	0.04		1
Con 90	<0.01	<0.01	0.03	0.03	<0.01	0.02	0.02	0.01	0.05	0.01		3 - - 13 0
·ac	0.03	0.02	0.02	0.01	0.01	0.01	<0.01	0.02	0.02	<0.01		'uple', 'get3h
							_			-		J

One Particle

Huge Number of Particles

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

Robot Mapping

SLAM: Simultaneous Localization And Mapping

- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Particle Filter SLAM – Video 1

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Dynamic Bayes nets are a generalization of HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 Likelihood: P(E₁^a | G₁^a) * P(E₁^b | G₁^b)
- Resample: Select samples (tuples of values) in proportion to their likelihood (weight)

Most Likely Explanation

HMMs: MLE Queries

HMMs defined by

- States X
- Observations E
- Initial distribution: $P(X_1)$
- Transitions: $P(X|X_{-1})$
- Emissions: P(E|X)

- New query: most likely explanation: $\underset{x_{1:t}}{\arg \max P(x_{1:t}|e_{1:t})}$
- New method: the Viterbi algorithm
- Question: Why not just apply filtering and predict most likely value of each variable separately?

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of all paths to each node, Viterbi computes best paths
- Exponentially many paths, but dynamic programming can find best path in linear time!

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

Viterbi Algorithm (Max)

 $f_t[x_t] = P(x_t, e_{1:t})$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

Speech Recognition

Speech Recognition in Action

Digitizing Speech

Speech waveforms

Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

Spectral Analysis

- Frequency gives pitch; amplitude gives volume
 - Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)

Fourier transform of wave displayed as a spectrogram

Human ear figure: depion.blogspot.com

Acoustic Feature Sequence

 Time slices are translated into acoustic feature vectors (~39 real numbers per slice)

These are the observations E, now we need the hidden states X

Speech State Space

HMM Specification

- P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
- P(X|X') encodes how sounds and words can be strung together

State Space

- We will have one state for each sound in each word
- Mostly, states advance sound by sound
- Build a little state graph for each word and chain them together to form the state space X

States in a Word

Transitions with a Bigram Model

	198015222 the first
	194623024 the same
nts	168504105 the following
Counts	158562063 the world
•	
Training	14112454 the door
Tra	
	23135851162 the *

$$\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162}$$

= 0.0006

Decoding (Viterbi)

- Finding the words given the acoustics is an HMM inference problem
- Which state sequence $x_{1:T}$ is most likely given the evidence $e_{1:T}$?

$$x_{1:T}^* = \arg\max_{x_{1:T}} P(x_{1:T}|e_{1:T}) = \arg\max_{x_{1:T}} P(x_{1:T}, e_{1:T})$$

• From the sequence x, we can simply read off the words

