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Bayes Nets: Inference

Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Bayes Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values

P(.\'}(Jl - (_ln)
= Bayes’ nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

T
P(x1,29,...2p) = H P(x;|parents(X;))
i=1




B P(B)
+b | 0.001
-b | 0.999
A J P(J|A)
+a | 4 0.9
+a | - 0.1
a +j 0.05
-a j 0.95

Example: Alarm Network

P(+b, —e, +a, —7, +m) =

P(+b)P(—e

) P(+a| + b, —e)

E P(E)

+e | 0.002

-e | 0.998

A M P(M|A)
+a | +m 0.7
+3a -m 0.3
-a +m 0.01
-a -m 0.99

(—j| + a)P(+m|+a) =

o
B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999




B P(B)
+b | 0.001
-b | 0.999
A J P(J|A)
+a | 4 0.9
+a | 0.1
a +j 0.05
-a j 0.95

Example: Alarm Network

P(+b, —e,+a, —j,+m) =
VP (+a| + b, —e)P(—j| +
0.001 x 0.998 x 0.91 x 0.1 x 0.7

P(+b)P(—¢

E P(E)

+e | 0.002

-e | 0.998

A M | P(M|A)
+a | +m 0.7

+3a -m 0.3

a +m 0.01

a -m 0.99
1) P(+m|+a) =

o f
B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
b | -e | -a 0.999




D-Separation

= Question: Are X and Y conditionally independent given Active Triples Inactive Triples

evidence variables {Z}?

= Yes,if Xand Y “d-separated” by Z O—FO—FO O—FO—FO
= Consider all (undirected) paths from Xto Y
o | %o

= No active paths = independence!

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)

= Common cause A <— B — C where B is unobserved O\ /O O\ /O
= Common effect (aka v-structure) @ ‘Cj

A — B <— C where B or one of its descendants is observed

= All it takes to block a path is a single inactive segment




Bayes Nets

jRepresentation
¢ Conditional Independences

s Probabilistic Inference

= Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case exponential
complexity, often better)

= Inference is NP-complete

= Sampling (approximate)

= Learning Bayes Nets from Data



Inference

= Inference: calculating some useful = Examples:
guantity from a joint probability

distribution = Posterior probability

P(Q|[1 = eq,... [, = ¢yp,)

= Most likely explanation:
argmax, ’(Q =g|lk1 =e1...)




Inference by Enumeration

General case:

Evidence variables: Eq...
Query* variable: )
Hidden variables: My ..

Step 1: Select the
entries consistent with
the evidence

)
0.18

3
-1 0.25

® I o.ovJ
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oo (QZ;,;
P(Q,el...ek)z Z

* Works fine with

= We want: multiple query
EL=e1...€e X1, X ... X, ) variables, too
All variables P(Qlel .. els:)
. H
= Step 2: Sum out H to get joint of = Step 3: Normalize

Query and evidence

1
><_
A

Z=Y P(Q.e e
1]

P(Qler---er) = %P(Q,c: ‘e ep)




Inference by Enumeration in Bayes Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B |+j.+m) oc P(B,+j,+m) Q

Z (B,e,a,+7,+m)

Z P(a|B, ) P(+j|a)P(+m]a)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| +a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)



Inference by Enumeration?

P(Antilock|observed variables)



Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = ldea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

= First we’ll need some new notation: factors



Factor Zoo
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Factor Zoo |

POr, W)
T W P
hot sun 0.4

= Joint distribution: P(X,Y)
= Entries P(x,y) forall x, y

= Sumstol
hot rain 0.1
cold sun 0.2
cold rain 0.3

= Selected joint: P(x,Y)

= Aslice of the joint distribution

P’(cold, W)

= Entries P(x,y) for fixed x, all y

= Sums to P(x) T W P

cold sun 0.2

= Number of capitals = cold | rain | 0.3
dimensionality of the table




Factor Zoo |l

= Single conditional: P(Y | x)

f‘ "r s
= Entries P(y | x) for fixed x, all y P(” lCOZd)

= Sumstol T W P
cold sun 0.4
cold rain 0.6

P(W|T)
T W P
hot sun 0.8

hot rain 0.2

cold sun 0.4 ]
cold rain | 0.6 || P(chold)

= Family of conditionals:
P(Y | X)

= Multiple conditionals

_ - P(W|hot)
s Entries P(y | x) forall x, y

= Sumsto [X]|




Factor Zoo |l

= Specified family: P(y | X)

= Entries P(y | x) for fixed v,

= Sumsto ... who knows!

but for all x

P(rain|1")

T W P
hot rain 0.2
cold rain 0.6

|

P(rain|hot)
P(rain|cold)




Factor Zoo Summary

» In general, when we write P(Y, ... Yy | X; ... X,)

= Itis a “factor,” a multi-dimensional array

« Itsvaluesare P(y, ... yy | X; ... X)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

e T e
PR -
xR




Example: Traffic Domain

= Random Variables 1’(“6)1
+r .

= R: Raining @ T |09
=« T: Traffic P(T|R)

= L: Late for class! r | +t | 08
+r -t 0.2
-r +t 0.1

P(L) = ? o e

P(L|T)
:ZP(T,t,L) +t +| 0.3
rt +t -| 0.7
= Z P(r)P(t|r)P(L|t) I J.rlI 8:;




Variable Elimination (VE)




Inference by Enumeration: Procedural Outline

= Track objects called factors

= Initial factors are local CPTs (one per node)

P(RR) P(T|R) P(L|T)

+r 0.1 +r +t | 0.8 +t + 0.3

-r 0.9 +r -t | 0.2 +t -| 0.7
-r +t | 0.1 -t + 0.1
-r -t |1 0.9 -t -1 0.9

= Any known values are selected
= E.g ifweknow L = +C then the initial factors are:

P(1?) P(T'|R) P(+£|1)
+r 0.1 +r | +t | 0.8 +t +| 0.3
-r 0.9 +r -t | 0.2 -t +| 0.1

-r + | 0.1
-r -t 1 0.9

s Procedure: Join all factors, then eliminate all hidden variables



Operation 1: Join Factors

= First basic operation: joining factors
_ . . —
Combining factors: 2@ —
= Get all factors over the joining variable

= Build a new factor over the union of the variables involved

= Example: JoinonR

P(R) x P(T|R) =——> P(R,T)

+r 0.1 +r | +t | 0.8 +r | +t | 0.08
f -r 0.9 +r | -t 10.2 +r | -t | 0.02

-r | +t |0.1 -r | +t | 0.09
-r | -t |0.9 -r | -t | 0.81

wr it P(r,t) = P(r) - P(t|r)

= Computation for each entry: pointwise products



Example: Multiple Joins

-
N -




®

Example: Multiple Joins

P(R)
+r | 0.1
T105] JoinR (BT} JoinT
| +r [ +1 [ 0.08
P(I’R) +r | -t | 0.02 |:>
S > w009
: r |-t |0.81 72
+r | -t (0.2 R, T }_)(1£~13L)
TR 8_; it | +t | + |0.024
-r| -t |O. +r | +t -1 | 0.056
| | it | t | + |0.002
P(L|T) P(L|T) ir | t | - |0.018
+t ] +1]0.3 +t | +110.3 :: :: :| 8'822
+t | -l (0.7 +t | -1 |10.7 -r - + 0.081
T+ (0.1 T [+]0.1 . T 0729
| -1]0.9 t | -1 [0.9 '




Operation 2: Eliminate

= Second basic operation: marginalization

s Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= Example:

P(R,T) sum R P(T)
+r | +t | 0.08 :> +t
X

+r | -t | 0.02
-r | +t | 0.09
-r | -t | 0.81




P(L,7,L)

Multiple Elimination

Lo

Sum
out R

Sum
P, L) outT
+t | +l | 0.051
+t | -l | 0.119 ,—:>
-t | +| | 0.083
-t | -1 | 0.747

®

P(L)

0.134

0.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

{




Marginalizing Early (= Variable Elimination)




Traffic Domain

@ P(L) =7

@ = Inference by Enumeration = Variable Elimination

é) —ZZP L|t)P(r)P(t|r) —ZP Llt) ZP P(t|r)

Joinonr Joinonr
[ | | |
\ — I —
Joinont Eliminate r
7 ) | J
Eliminate r Join c!n t
7 J [ | J

Y
Eliminate t Eliminate t



O

P(R)

+r | 0.1

-r | 0.9

P(T'|R)

+r | +t |0.8

+r | -t |0.2

-r | +t (0.1

-r | -t 0.9

P(L|1)

+t | +1 |0.3

+t | -l (0.7

-t | +l [0.1

-t | -1 0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R,T)

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

R, T

®

P(L|1)

+l

0.3

0.7

+l

0.1

0.9

Sum out R

=P
+t | 0.17
-t | 0.83

%
®

P(L|1)

+l

0.3

0.7

+l

0.1

0.9

JoinT

—>

Sumout T

>

P(r, L)

—>

+t | +| | 0.051

+t | -l | 0.119

-t | +l | 0.083

-t | -l [ 0.747

®

(L)

+]

0.134

0.866




Evidence

a If evidence, start with factors that select that evidence

= No evidence uses these initial factors:

P(R) P(rIR) P(L|T)

+r 0.1 +r | +t [ 0.8 +t +| 0.3

-r 0.9 +r -t | 0.2 +t -1 0.7
-r +t | 0.1 -t + 0.1
-r -t | 0.9 -t -1 0.9

= Computing P(L| 4 ), theinitial factors become:

P(+r) P14+ 7r) P(L|T)
+r 0.1 +r +t | 0.8 +t + 0.3
+r | -t | 0.2 +tt | -l |07
-t + 0.1
-t -1 0.9

= We eliminate all vars other than query + evidence



Evidence I

= Result will be a selected joint of query and evidence

= E.g.for P(L | +r), we would end up with:

p(+.,‘, L) Normalize P(L + 7’)

+r | +l | 0.026 +| | 0.26
+r| 1] 0.074 > 11074

= T0 get our answer, just normalize this!

= That’sit!



General Variable Elimination

ey P(QIEL =eq, ...

Start with initial factors:

Ey = eg)

= Local CPTs (but instantiated by evidence)

While there are still hidden variables (not Q

or evidence):
= Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

Join all remaining factors and normalize

@ [ e ] e
L1,
.' i~ ! 4 8
v’ =I> =t r "L‘_llll
ot e a4



Example

P(B j.m) x P(B,j,m)

P(B) P(E) P(A|B, E) P(j|A) P(m|A)
Choose A
P(A|B, E)
P(j|A) X > P(G,mABE) | > IP(j,m|B,E)
P(m|A)
P(B) P(E) P(j,m|B, E)




Example

P(B)

P(E) P(j,m|B, E)

Choose E

Py)

P(j,m|B, £)

X > IP(j,m,E|B) Y O P(j.m|B)

P(B) P(j, m|B)

Finish with B

P(B)
P(j. m|B)

X > _p(‘.-}" ., b’) Normalize > P( BI]7 "I"I"L)




Same Example in Equations

P(B j.m) x P(B,j,m)

P(B)

P(E) P(A

B, E) P(j|A) P(m|A)

P(B|j,m)

.
X

r )
P(B, 1)

Y P(B, j,m,e, a)
WL

> P(B)P(e)P(a|B,e)P(j
£,a

a)P(m|a)

Y P(B)P(e)) P(alB,e)P(jla)P(m|a)

€

> P(B)P(c)f1(B,¢,j,m)

‘.

PB)S P(e)f1(B,e, d,m)
e
P(B)f2(B,j.m)

marginal can be obtained from joint by summing out
use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f,

use x*(y+z) =xy + xz

joining on e, and then summing out gives f,



Variable Elimination Ordering

= Forthe query P(X_|vy,,..,y,) work through the following two different orderings: Z, X,,
v X gand X, .., X
the orderings? What is the best ordering?

.1 Z. What is the size of the maximum factor generated for each of

IClicker:
A: Z then X1...Xn-1

B: X1... Xn-1then Z

=  Answer: 2n+1 versus 22 (assuming binary)

= In general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

All we are doing is changing the ordering of the variables that are eliminated...

...but it can (sometimes) reduce storage and complexity to linear w.r.t. number of
variables!

The computational and space complexity of variable elimination is determined by the
largest factor

The elimination ordering can greatly affect the size of the largest factor.

= E.g., previous slide’s example 2n vs. 2

Does there always exist an ordering that only results in small factors?
= Nol!



Worst Case Complexity?

= CSP:
{ oy Ve Vs ) A (- VsV -y A eV —waViey YA (Vg Voxs ) A (e Vs Vg WA VsV Eg)A(~asVasV-wr ) A(asVoze VT )

PIX;=0=FPX; =1 =I.!
Y'[ - )(1 vV Xg ‘v’ ﬁxY:;
Yo = XV XgV X7
Yio=YiAY:

Y;8 — Y7 A Yg
Yioa3.4=Yi2/ A Yy

Y5578 = Y56 A Y74

Z=Y10534AY50678

= |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes nets is NP-hard. No known efficient probabilistic inference in general.



Polytrees

= A polytree is a directed graph with no undirected cycles

= For poly-trees you can always find an ordering that is efficient
s Tryit!!
= Very similar to tree-structured CSP algorithm

= Cut-set conditioning for Bayes net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!



Bayes Nets

Y 4 Representation
¢/ Conditional Independences

s Probabilistic Inference

VEnumeration (exact, exponential complexity)

Variable elimination (exact, worst-case
exponential complexity, often better)

Jlnference is NP-complete

= Sampling (approximate)

= Learning Bayes Nets from Data



