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Probability Recap

Conditional probability P(zly) = Pz, y)
P(y)
Product rule P(x,y) = P(z|y)P(y)
Chain rule P(X1,X2....Xp) = P(X1)P(X2|X1)P(X3|X1. X2)...
- H P("/lxl'\/:—l)
i—1
X, Y independent if and only if: Va,y . PP(z,y) = P(x)?(y)

X and Y are conditionally independent given Z if and only if:
\T/:]?, Y,z . P(m,g;|z) = P(T‘Z)P(y‘:)

X 1Y

Z



Bayes Nets

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
= Inference: given a fixed BN, what is P(X | e)?
= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?



Bayes Net Semantics

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination of
parents’ values: P(Xml o (ln)

= Bayes’ nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

T
P(xi,29,...2p) = H P(x;|parents(X;))
i=1




Example: Alarm Network
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Example: Alarm Network
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Size of a Bayes Net

= How big is a joint distribution over N = Both give you the power to calculate
Boolean variables?

P(Xq.Xn, ... X
‘ZN ( 1. 22, n)

= BNs: Huge space savings!

= How bigis an N-node net if nodes

have up to k parents? = Also easier to elicit local CPTs

o O(N * 2k+1) = Also faster to answer queries (coming)




Bayes Nets

g/Representation
« Conditional Independences
s Probabilistic Inference

= Learning Bayes Nets from Data



Conditional Independence

= Xand Y are independent if
vz,y Plz,y) = P(z)P(y) —--=% X1Y
= Xand Y are conditionally independent given Z

Ve,y,z P(x,ylz) = P(z[z)P(y|z) —--> X LY|Z

» (Conditional) independence is a property of a distribution

» Example: Alarm 1L Fire|Smoke




Probabilities in BNs w8 e,

= Why are we guaranteed that setting

T
P(.Tl,frz, .;7:,;,) - ]_[ P(a:ipal'C'ntS(Xl-))

1=1

results in a proper joint distribution?

= Chain rule (valid for all distributions):

= Assume conditional independences:

"
P(xy.xp,...ap) = H P(zixy...2; 1)

=1

P(ax;lxeq,...x; 1) = P(x;|parents(X;))

T
- Consequence: P(xq1,T5,...Tpn) = n P(x;|parents(X;)) \

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies

=1

Conditionally independent of
Non-descendants given parents



Bayes Nets: Assumptions

= Assumptions we are required to make to define the Bayes
net when given the graph:

P(xi|lxy - xi_1) = P(z;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions:

» Often additional conditional independences

= They can be inferred from the graph structure

= Important for modeling: understand assumptions made
when choosing a Bayes net graph



Example

OO~

= Conditional independence assumptions directly from simplifications in chain rule:

Standard chainrule:  p(z,y, z, w) = p(x)p(y|z)p(z|z, y)p(w|z, Y, 2)

Bayes net: p(z,y,z,w) = p(x)p(y|z)p(z|y)p(w|2)
Since: z 1 x| y and w1l X,y | z (cond. indep. given parents)

= Additional implied conditional independence assumptions? w 1L x|y

pw,x,y) 2. p(x)pOx)pzly)p(wlz)
p(x,y) p(x)p(ylx)

p(wlx,y) = — Z pzly)p(wlz) = Z p(Zy)p(wlz, y)

= > pGwly) = pwly)



Independence in a BN

= Important question about a BN:
= Are two nodes independent given certain evidence?
» If yes, can prove using algebra (tedious in general)
= If no, can prove with a counter example

=00

= Question: are X and Z guaranteed to be independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?



D-separation: Outline




D-separation: Outline

» Study independence properties for triples
= Analyze complex cases in terms of member triples

» D-separation: a condition / algorithm for answering such
gueries



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!

One example set of CPTs for which X is not
mdependent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no
traffic

X: Low pressure  Y:Rain Z: Traffic

= In humbers:

P(x,y.z) = P(x)P(3

P(+y [ +x)=1,P(-y|-x)=1,
P(+z | +y)=1,P(-z|-y)=1



Causal Chains

= This configuration is a “causal chain”

296940

X: Low pressure  Y:Rain Z: Traffic

P(x,y.z) = P(x)P(y|z) P(z|y)

= Guaranteed X independent of Z given Y?

P(x,y, 2)
1)(:1:: U)

_ P() P(yl=) P(z]y)
P(z)P(y|z)

P(z|r,y) =

= P(z|y)

Yes!

= Evidence along the chain “blocks” the
influence



Common Cause

= This configuration is a “common cause” = Guaranteed X independent of Z? No!
Y: Project " Peoject 1 = One example set of CPTs for which X is not
due | Duer | independent of Z is sufficient to show this

o

independence is not guaranteed.

= Example:

= Project due causes both forums busy
and lab full

= In humbers:

3\
_ — Wy
X: Ec:;ti/ms r_--——I [$ & g 7: Lab full
, MM s P(+x | +y)=1,P(x|-y)=1,

’ P(+2 | +y)=1,P(-z | -y) =1
P(z,y,z) = P(y) P(z|y) P(z|y)




Common Cause

= This configuration is a “common cause”

Y: Project Project
due Due:
A\

X: Forums r_i_.__
busy { E

P(z,y,z) = P(y)P(xz|y)P(z|y)

l?@ Z: Lab full

= Guaranteed X and Z independent given Y?

P(x,y, 2)

P(z|z,y) = Ple.y)

_ Py)Pxly) P(zly)
P(y)P(x|y)

= P(z|y)

Yes!

= Observing the cause blocks influence
between effects.



= Last configuration: two causes of one

effect (v-structures)

X: Raining Y: Ballgame
I \ l,%

Vi — My
b >

Z: Traffic

Common Effect

= Are Xand Y independent?

= Yes: the ballgame and the rain cause traffic, but they
are not correlated (covered stadium!)

= Still need to prove they must be (try it!)
= Are Xand Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= Thisis backwards from the other cases

= Observing an effect activates influence between

possible causes.



The General Case




The General Case

= General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph @ @"

= Any complex example can be broken ’ @_
into repetitions of the three canonical cases o



Reachability

= Recipe: shade evidence nodes, look for
paths in the resulting graph

= Attempt 1: if two nodes are connected e e
by an undirected path not blocked by a
shaded observed node, they are not

conditionally independent
= Influence can “flow” between them, unblocked Q a

= Almost works, but not quite

= Where does it break?

s Answer: the v-structure at T doesn’t count as
a link in a path unless “active” via being
observed as evidence




Active / Inactive Paths

= Question: Are X and Y conditionally independent given Active Triples Inactive Triples

evidence variables {Z}?

= Yes,if Xand Y “d-separated” by Z O—PO—PO O—PO—PO
= Consider all (undirected) paths from Xto Y
o | %o

= No active paths = conditional independence!

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)

= Common cause A <— B — C where B is unobserved O\ /O O\ /O
= Common effect (aka v-structure) @ @

A — B <— C where B or one of its descendants is observed

= All it takes to block a path is a single inactive segment




D-Separation

e Query: X, AL X Xp o Xi 3 0

= Check all (undirected!) paths between X;and X;

= If one or more active, then independence not guaranteed

Xi XX { Xk, ooy Xk, }

=« Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X; L X Xy ooy Xk, }




R

e

1

.T/

Example

Yes

Not guaranteed

Not guaranteed

iIClicker:
A: Yes

B: No
C: Not Guar.




Example

Lurr - Yes @

L1 B Yes @ @ iClicker:

A: Yes
L1l B|T Not guaranteed / -
L BT Not guaranteed @ @ C: Not Guar.

L1 B|T, R Yes @



Example

= Variables:

= R: Raining e
» T: Traffic
= D: Roof drips Q iClicker:
= S: I’'m sad A:Yes
= Questions: Q CBJ:: ﬁ(;t Guar.
T 1D Not guaranteed

T 1 D|R Yes
T 1 D|R, S Not guaranteed




Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X; AL XA {Xny, ooy X, )

= This list determines the set of probability
distributions that can be represented




Computing All Independences

/CD\ XUZ|Y

Different structure, but
same cond. independences!
f XULZ|Y
We didn’t encode this directly! > ; X 1L Z
None!
P> S




Topology Limits Distributions

(X LY, X1 ZY U Z,

Given some graph topology
XUZ|YV, XY |ZY 1 Z|X}

G, only certain joint
distributions can be encoded @

The graph structure @ @ ® @
guarantees certain ®

(conditional) independences

(There might be more
independence) @

Adding arcs increases the set
of distributions, but has

U
several costs & @{)\@ &

Full conditioning can encode

any distribution @5’%&) QS%) Q(f)' _@

(XU Z|Y)



Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can be deduced
from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= A Bayes net’s joint distribution may have further (conditional)
independence that is not detectable until you inspect its
specific distribution



Bayes Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
=« Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

s Learning Bayes’ Nets from Data



