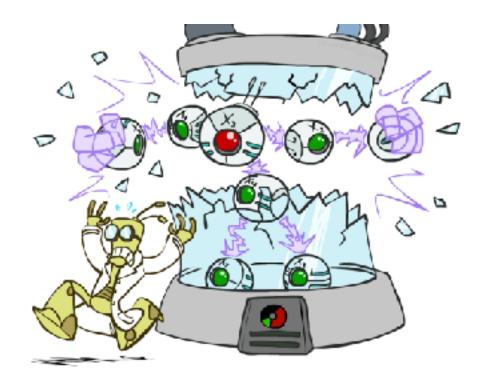
# CS 383: Artificial Intelligence

## Bayes Nets: Independence



Prof. Scott Niekum — UMass Amherst

# **Probability Recap**

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

Chain rule

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

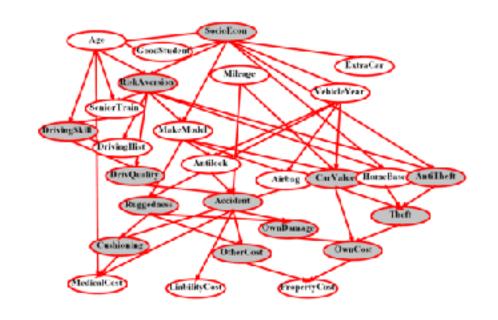
**X**, Y independent if and only if:  $\forall x, y : P(x, y) = P(x)P(y)$ 

X and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \qquad X \perp \!\!\!\perp Y|Z$$

# **Bayes Nets**

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

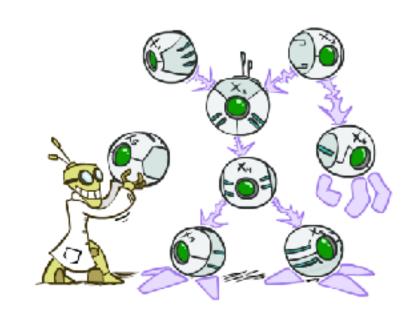


- Questions we can ask:
  - Inference: given a fixed BN, what is P(X | e)?
  - Representation: given a BN graph, what kinds of distributions can it encode?
  - Modeling: what BN is most appropriate for a given domain?

# **Bayes Net Semantics**

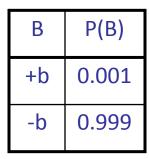
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
  - A collection of distributions over X, one for each combination of parents' values:  $P(X|a_1...a_n)$
- Bayes' nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

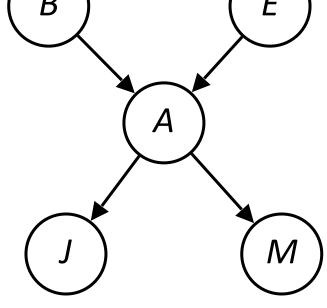




# Example: Alarm Network

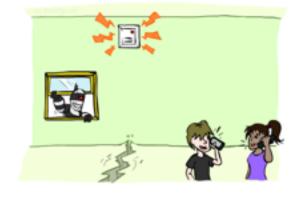


| Α  | J  | P(J A) |
|----|----|--------|
| +a | +j | 0.9    |
| +a | -j | 0.1    |
| -a | +j | 0.05   |
| -a | -j | 0.95   |



| E  | P(E)  |  |
|----|-------|--|
| +e | 0.002 |  |
| -е | 0.998 |  |

| Α  | Μ  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |



| В  | E  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -е | +a | 0.94     |
| +b | -е | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -е | -a | 0.999    |

| P(  | +b, | -e, | +a. | -i  | +m | = |
|-----|-----|-----|-----|-----|----|---|
| - ' |     | ~ , | 7   | .,, | 1, |   |

# Example: Alarm Network

P(E)

0.002

0.998

M

+m

-m

+m

-m

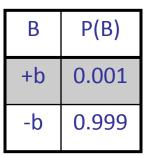
P(M|A)

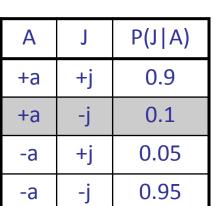
0.7

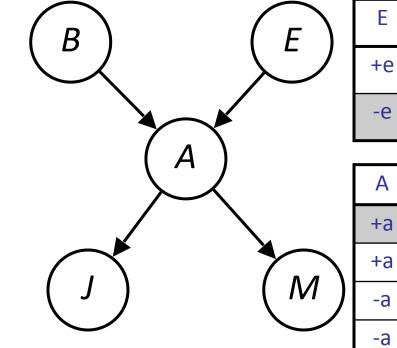
0.3

0.01

0.99







| P(+b, -e, +a, -j, +m) =                                |
|--------------------------------------------------------|
| P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =                |
| $0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$ |



| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | -e | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |

# Size of a Bayes Net

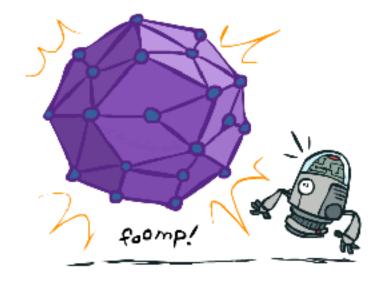
- How big is a joint distribution over N Boolean variables?
  - 2N
- How big is an N-node net if nodes have up to k parents?
  - O(N \* 2k+1)



Both give you the power to calculate

$$P(X_1, X_2, \ldots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)



# **Bayes Nets**



- Conditional Independences
- Probabilistic Inference
- Learning Bayes Nets from Data

# Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\!\perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \!\!\!\perp Y|Z$$

■ (Conditional) independence is a property of a distribution

**Example:**  $Alarm \perp Fire | Smoke |$ 



## Probabilities in BNs



Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions):  $P(x_1,x_2,\ldots x_n) = \prod_{i=1}^n P(x_i|x_1\ldots x_{i-1})$
- Assume conditional independences:  $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$

$$\rightarrow$$
 Consequence:  $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$ 

- Not every BN can represent every joint distribution
  - The topology enforces certain conditional independencies

Conditionally independent of Non-descendants given parents

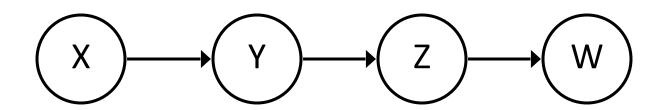
# **Bayes Nets: Assumptions**

Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions:
  - Often additional conditional independences
  - They can be inferred from the graph structure
- Important for modeling: understand assumptions made when choosing a Bayes net graph





Conditional independence assumptions directly from simplifications in chain rule:

Standard chain rule: p(x, y, z, w) = p(x)p(y|x)p(z|x, y)p(w|x, y, z)

Bayes net: p(x,y,z,w) = p(x)p(y|x)p(z|y)p(w|z)

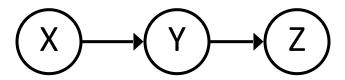
Since:  $z \perp\!\!\!\perp x \mid y$  and  $w \perp\!\!\!\perp x, y \mid z$  (cond. indep. given parents)

■ Additional implied conditional independence assumptions?  $w \perp x \mid y$ 

$$p(w|x,y) = \frac{p(w,x,y)}{p(x,y)} = \frac{\sum_{z} p(x)p(y|x)p(z|y)p(w|z)}{p(x)p(y|x)} = \sum_{z} p(z|y)p(w|z) = \sum_{z} p(z|y)p(w|z,y)$$
$$= \sum_{z} p(z,w|y) = p(w|y)$$

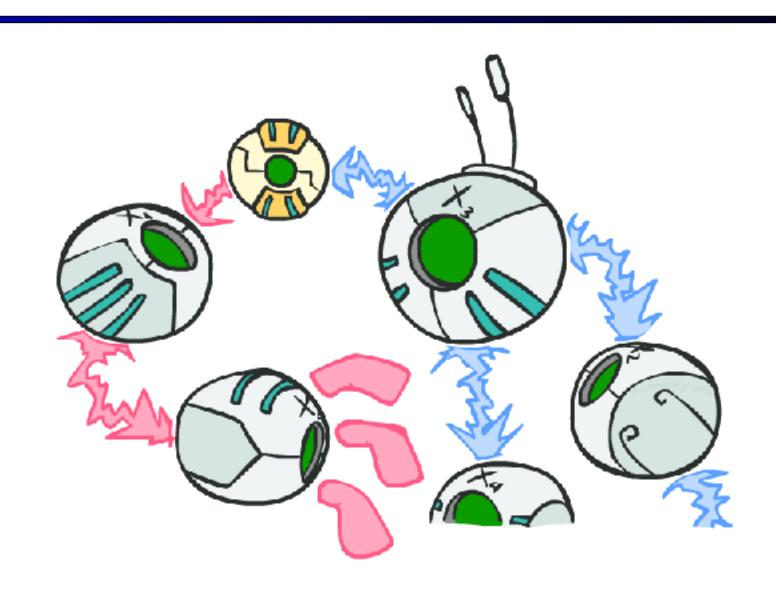
# Independence in a BN

- Important question about a BN:
  - Are two nodes independent given certain evidence?
  - If yes, can prove using algebra (tedious in general)
  - If no, can prove with a counter example
  - Example:



- Question: are X and Z guaranteed to be independent?
  - Answer: no. Example: low pressure causes rain, which causes traffic.
  - X can influence Z, Z can influence X (via Y)
  - Addendum: they could be independent: how?

# D-separation: Outline



# D-separation: Outline

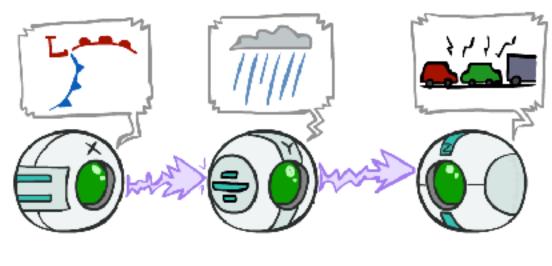
Study independence properties for triples

Analyze complex cases in terms of member triples

 D-separation: a condition / algorithm for answering such queries

## Causal Chains

■ This configuration is a "causal chain"



X: Low pressure

Y: Rain

Z: Traffic

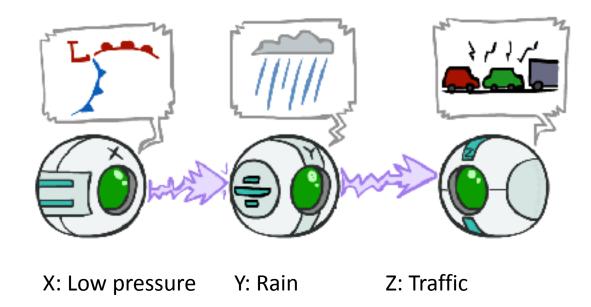
$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z? No!
  - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
  - Example:
    - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
    - In numbers:

$$P( +y | +x ) = 1, P( -y | -x ) = 1,$$
  
 $P( +z | +y ) = 1, P( -z | -y ) = 1$ 

## **Causal Chains**

■ This configuration is a "causal chain"



$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

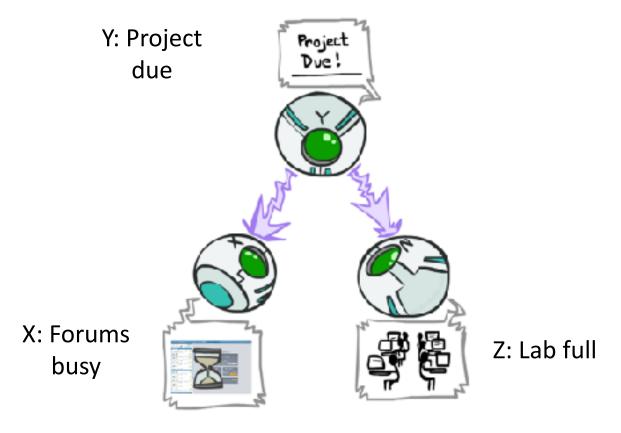
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

## **Common Cause**

■ This configuration is a "common cause"



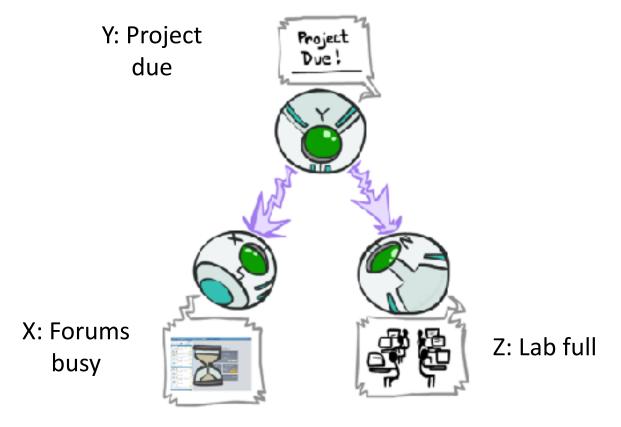
$$P(x,y,z) = P(y)P(x|y)P(z|y)$$

- Guaranteed X independent of Z? No!
  - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
  - Example:
    - Project due causes both forums busy and lab full
    - In numbers:

$$P( +x | +y ) = 1, P( -x | -y ) = 1,$$
  
 $P( +z | +y ) = 1, P( -z | -y ) = 1$ 

## **Common Cause**

This configuration is a "common cause"



$$P(x,y,z) = P(y)P(x|y)P(z|y)$$

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

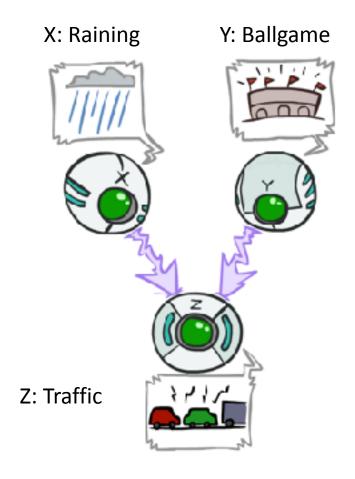
$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

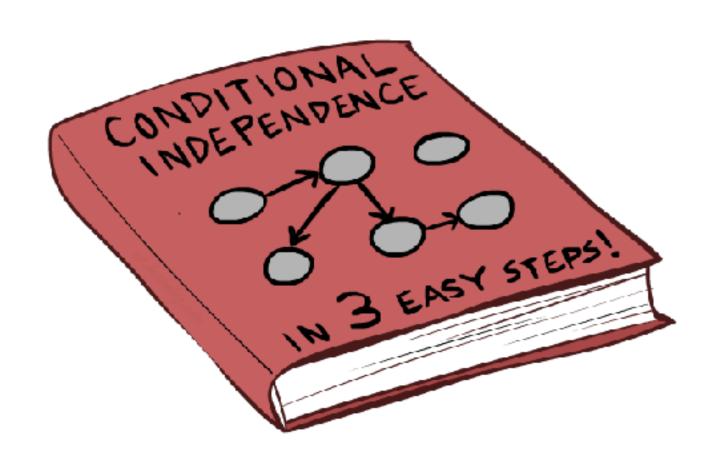
## Common Effect

 Last configuration: two causes of one effect (v-structures)



- Are X and Y independent?
  - *Yes*: the ballgame and the rain cause traffic, but they are not correlated (covered stadium!)
  - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
  - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
  - Observing an effect activates influence between possible causes.

## The General Case



## The General Case

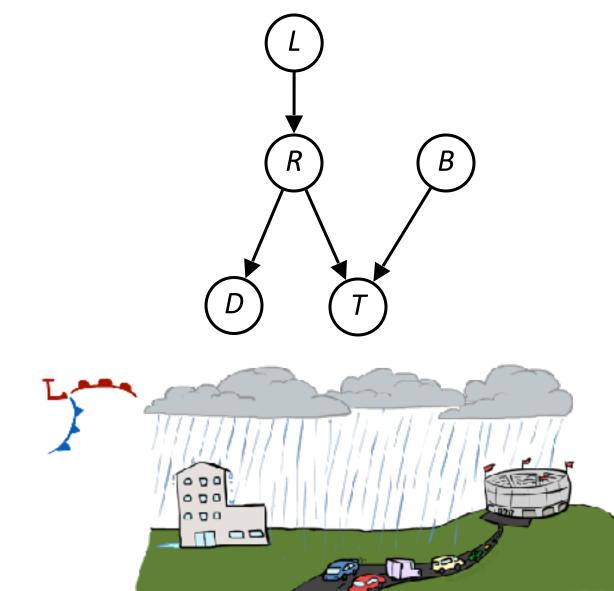
General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Any complex example can be broken
 into repetitions of the three canonical cases

# Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded observed node, they are not conditionally independent
  - Influence can "flow" between them, unblocked
- Almost works, but not quite
  - Where does it break?
  - Answer: the v-structure at T doesn't count as a link in a path unless "active" via being observed as evidence



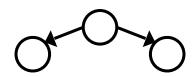
# Active / Inactive Paths

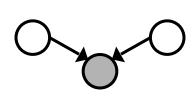
- Question: Are X and Y conditionally independent given evidence variables {Z}?
  - Yes, if X and Y "d-separated" by Z
  - Consider all (undirected) paths from X to Y
  - No active paths = conditional independence!

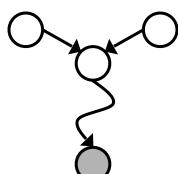
- A path is active if each triple is active:
  - Causal chain  $A \rightarrow B \rightarrow C$  where B is unobserved (either direction)
  - Common cause  $A \leftarrow B \rightarrow C$  where B is unobserved
  - Common effect (aka v-structure)
     A → B ← C where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

#### **Active Triples**



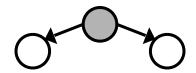






#### **Inactive Triples**







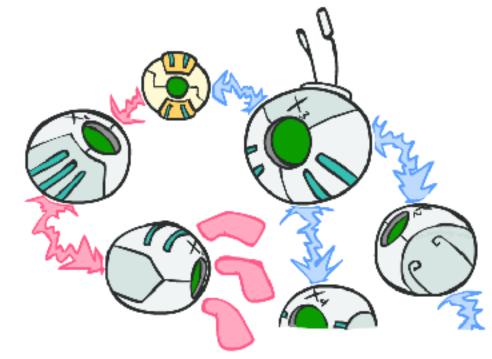
# **D-Separation**

- Query:  $X_i \perp \!\!\! \perp X_j | \{X_{k_1},...,X_{k_n}\}$
- lacktriangle Check all (undirected!) paths between  $X_i$  and  $X_j$ 
  - If one or more active, then independence not guaranteed

$$X_i \bowtie X_j | \{X_{k_1}, ..., X_{k_n}\}$$

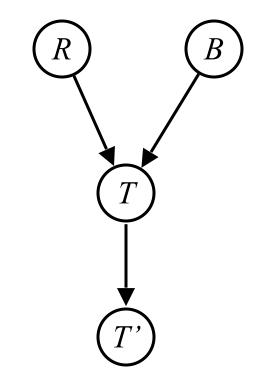
Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$



 $R \bot\!\!\!\!\perp B$  Yes

 $R \! \perp \! \! \! \perp \! \! B | T'$  Not guaranteed



### iClicker:

A: Yes

B: No

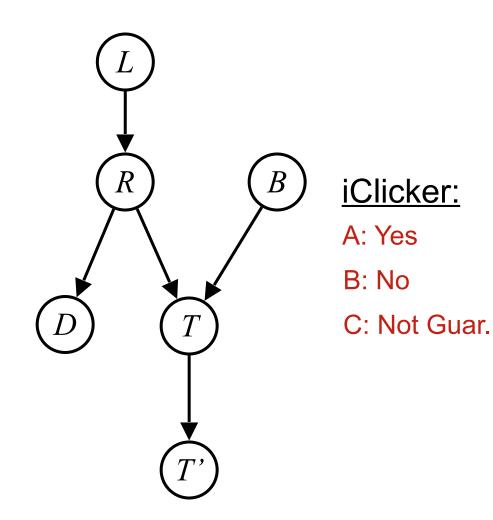
C: Not Guar.

 $L \! \perp \! \! \perp \! \! T' | T$  Yes

 $L \bot\!\!\!\bot B$  Yes

 $L \! \perp \! \! \perp \! \! B | T'$  Not guaranteed

 $L \! \perp \! \! \perp \! \! B | T, R$  Yes



## Variables:

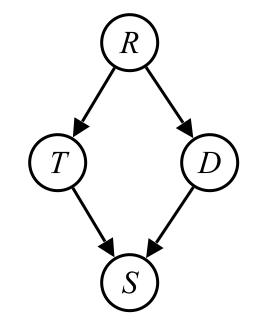
R: Raining

■ T: Traffic

■ D: Roof drips

■ S: I'm sad

• Questions:



### iClicker:

A: Yes

B: No

C: Not Guar.

$$T \perp\!\!\!\perp D$$
 Not guaranteed

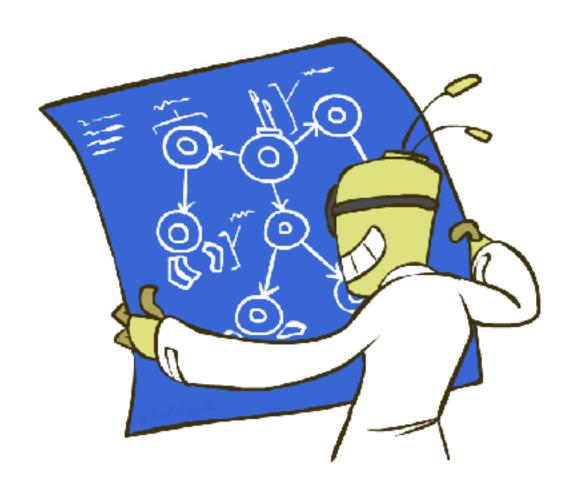
$$T \perp\!\!\!\perp D | R, S$$
 Not guaranteed

# Structure Implications

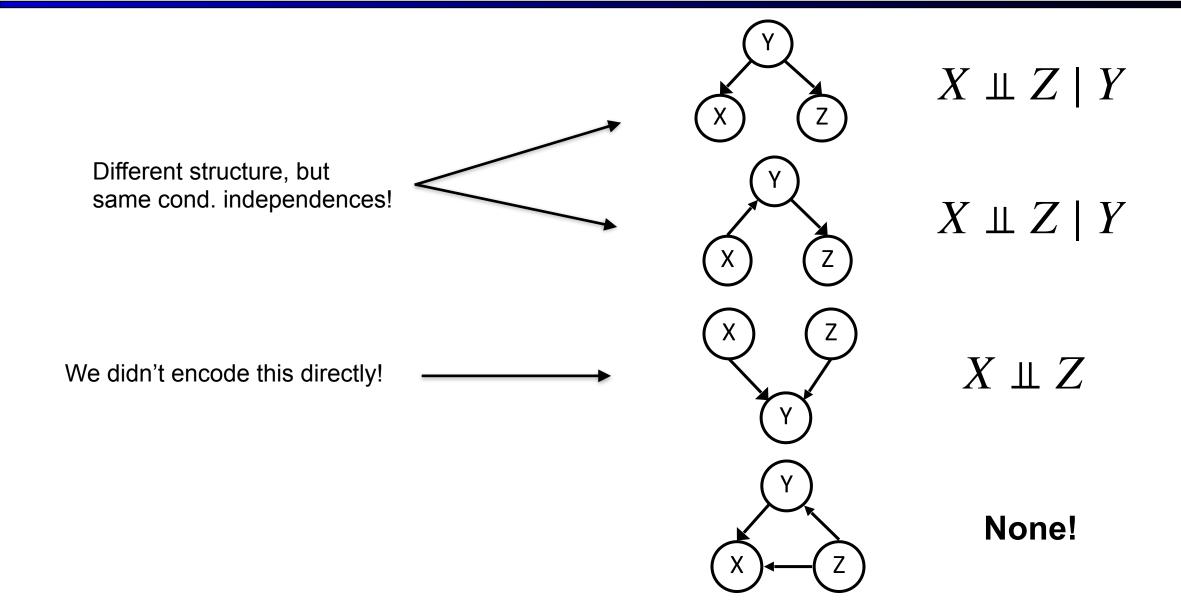
 Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

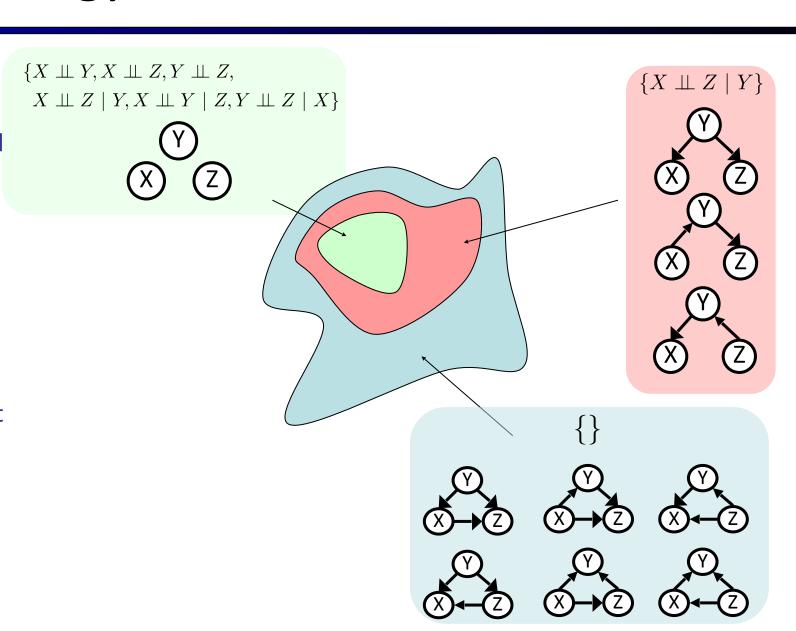


# Computing All Independences



# **Topology Limits Distributions**

- Given some graph topology
   G, only certain joint
   distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



## **Bayes Nets Representation Summary**

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

# **Bayes Nets**

- Representation
- Conditional Independences
  - Probabilistic Inference
    - Enumeration (exact, exponential complexity)
    - Variable elimination (exact, worst-case exponential complexity, often better)
    - Probabilistic inference is NP-complete
    - Sampling (approximate)
  - Learning Bayes' Nets from Data