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Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable

= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Independence




Independence

= Two variables are independent if:

Vae,y . P(x,y) = P(x)P(y)

= This says that their joint distribution factors into a product two simpler
distributions

= Another form:

Vr,y . P(z|ly) = P(x)
= We write: X 1Y

= Independence is a simplifying modeling assumption

= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?



Py (T, W)

Example: Independence?

T w P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

Py (T, W)

IClicker:

T W P
hot sun | 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain 0.4

A Y, Y
B:Y,N
C:N,Y
D: N, N



Example: Independence

= N fair, independent coin flips:

P(X1) P{X52) P(Xn)

H 0.5 H 0.5 o H 0.5

T 0.5 T 0.5 T 0.5
“_ i,

—




Conditional Independence

P(Toothache, Cavity, Alarm)

If | have a cavity, the probability that the sensor catches in it doesn't
depend on whether | have a toothache:

= P(+sensor | +toothache, +cavity) = P(+sensor | +cavity)

The same independence holds if | don’t have a cavity:
= P(+sensor | +toothache, -cavity) = P(+sensor | -cavity)

Sensor is conditionally independent of Toothache given Cavity:
= P(Sensor | Toothache, Cavity) = P(Sensor | Cavity)

Equivalent statements:
= P(Toothache | Sensor, Cavity) = P(Toothache | Cavity)
= P(Toothache, Sensor | Cavity) = P(Toothache | Cavity) P(Sensor | Cavity)
= One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

=« Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

Z

= Xis conditionally independent of Y given Z XY

if and only if:
Va,y,z 1 P(z,ylz) = P(x|z)P(y|2)

or, equivalently, if and only if
Vr,y,z: P(x|z,y) = P(x|z)



Conditional Independence

= What about this domain: iIClicker:
» Traffic AT U
= Umbrella B: T,R

= Raining C:UR




Conditional Independence

= What about this domain:

s Fire
= Smoke
= Alarm

IClicker:
A:F S
B:F A
C:S,A




Conditional Independence and the Chain Rule

= Chain rule: P(X1, Xa,... Xpn) = P(X1) P(X2|X1) P(X3|X1, X2) ...

= Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:
P(Traffic, Rain, Umbrella) =

P(Rain) P(Traffic Rain) P(Umbrclla|Rain)

= Bayes nets / graphical models help us express conditional independence assumptions



Bayes Nets: Big Picture




Bayes Nets: Big Picture

= Two problems with using full joint distribution tables as our
probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

= Hard to learn (estimate) anything empirically about more than a
few variables at a time

= Bayes nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these interactions are
specified




Example Bayes Net: Insurance




Example Bayes Net: Car
fanbelt
broken oroke

starter
broke

na gas hlockec




Graphical Model Notation

= Nodes: variables (with domains) TN
= Can be assigned (observed) or unassigned n\Weather
(unobserved)
= Arcs: interactions —~
= Similar to CSP constraints <Ca\;|ty>
= Indicate “direct influence” between variables /
= Formally: encode conditional independence "
(more later) T N
Toothache ( Catch )
( /> N

= For now: imagine that arrows mean direct
causation (in general, they don’t!)



Example: Coin Flips

= N independent coin flips

» & - ®

= No interactions between variables: absolute independence



Example: Traffic

= Variables:

» R:Itrains
s T: There is traffic

= Model 1: independence = Model 2: rain causes traffic

®
o o

= Why is an agent using model 2 better?



Example: Traffic Il

= Let’s build a causal graphical model!

= Variables

s T: Traffic
R: It rains

= L:Low pressure
= D: Roof drips

= B:Ballgame

= C: Cavity




= Variables

B: Burglary

A: Alarm goes off
M: Mary calls

J: John calls

E: Earthquake!

Example: Alarm Network

i J

N

v o
.

Jul
~J

f wih




Bayes Net Semantics




Bayes Net Semantics ,_;;‘s“e{

A \

= A set of nodes, one per variable X
= A directed, acyclic graph @ o @

= A conditional distribution for each node

» A collection of distributions over X, one for each
combination of parents’ values

P(X|ay...an)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs e

AR S

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

TL
Plxy,29....0p) = ]_[ P(x;|parents(X;))

=1



Probabilities in BNs w8 e,

= Why are we guaranteed that setting

T
P(.Tl,frz, .;7:,;,) - ]_[ P(a:ipal'C'ntS(Xl-))

1=1

results in a proper joint distribution?

= Chain rule (valid for all distributions):

= Assume conditional independences:

"
P(xy.xp,...ap) = H P(zixy...2; 1)

=1

P(ax;lxeq,...x; 1) = P(x;|parents(X;))

T
- Consequence: P(xq1,T5,...Tpn) = n P(x;|parents(X;)) \

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies

=1

Conditionally independent of
Non-descendants given parents



Example: Coin Flips

» & - ®

P(X1) P(X2) P(Xn)
h 0.5 h 0.5 o h 0.5
t 0.5 t 0.5 t 0.5

P(h,li,t,h) = 05%05*05*0.5

Only distributions whose variables are absolutely independent can be
represented by a Bayes’ net with no arcs.



(=)

P(R)

Example: Traffic

+r

1/4

3/4

+r

P(T

+t

3/4

1/4

+t

1/2

1/2

P(4r,—t) = 1/4*1/4




Example: Alarm Network

P(B)

+b (

0.001

0.999

P(+b, +e, -a, +j, -m) =

’é‘> Burglary @

N

A J P(J]|A)
+a | 4 0.9

+a | - 0.1

-a + @
a | 4 | >ees”

A M | P(M]|A)
+a [ +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m

E | P(E) M ]

re (0.002)) =)
L (=7,

-e | 0.998 .

B | E| A | PA|BE)

+b | +e | +a 0.95

+b | +e | -a ﬁoﬁ

tb | e | +a | ToeE

+b | -e | -a 0.06

-b | +e | +a 0.29

b | +e | -a 0.71

b | -e | +a 0.001

b | -e | -a 0.999




®

s Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T,R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




Example: Reverse Traffic

= Reverse causality?

P(T)
+t 9/16
-t 7/16

P(R|T)

+t +r 1/3
-r 2/3

-t +r 1/7
-r 6/7




Causality?

= When Bayes nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
» Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain (especially if
variables are missing)

= E.g. consider the variables Traffic and Roof Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(ax;lxq,...x; 1) = P(x;|/parents(X;))



Bayes Nets

= So far: how a Bayes net encodes a joint
distribution

= Next: how to answer queries about that
distribution

= Today:

= First assembled BNs using an intuitive notion of conditional
independence as causality

= Then saw that key property is conditional independence

= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)



