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Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Today

= Probability

= Random Variables

= Joint and Marginal Distributions

= Conditional Distributions

= Product Rule, Chain Rule, Bayes’ Rule
= Inference

= Independence

= You'll need all this stuff A LOT for the next
few weeks, so make sure you go over it
now!




Inference in Ghostbusters

= Aghostisin the grid
somewhere

= Noisy sensor readings tell how
close a square is to the ghost.
Most likely observations:
= On the ghost: red
= 1o0r2away: orange
= 3 or 4 away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Ghostbusters, no probabilities
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Uncertainty

s General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor readings
or symptoms)

= Unobserved variables: Agent needs to reason about other
aspects (e.g. where an object is or what disease is present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for
using beliefs and knowledge to perform inference




Random Variables

= Arandom variable is some aspect of the world about which we
(may) have uncertainty

= R=lIsitraining?

= T=Isithotorcold?

= D =How long will it take to drive to work?
= L=Whereis the ghost?

= We denote random variables with capital letters

= Like variables in a CSP, random variables have domains

= Rin{true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, o)

= Lin possible locations, maybe {(0,0), (0,1), ...}




= Associate a probability with each value

= [emperature:

Probability Distributions

P(r)
T P
hot 0.5
cold | 0.5

= Weather:

(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




» Unobserved random variables have distributions

P(T)
T P
hot 0.5
cold | 0.5

= Adiscrete distribution is a table of probabilities of values

= A probability (lower case value) is a single number

Probability Distributions

(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

P’(W = rain) = 0.1

OK if all domain entries are unique

. Musthave: V& P(X =2) >0 L4 Z P(X=xz)=1
T




Joint Distributions

= Ajoint distribution over a set of random variables: X1.Xo,..

specifies a real number for each assignment (or outcome):

P(-'le = X1, _X'Q = T2,... Xn = '1771)
Plxq,xo,...20)

= Must obey:
P(z1,22,...7n) 2 0

Z P(wl:wQ: R fU‘n.) =1

(C[Z]_,I:g,-uil"-n)

= Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

. .AYTI_

P(r,wW)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3




Probabilistic Models

: . _ : Distributi W
= A probabilistic model is a joint distribution ISLIDUTION OVEr L,

over a set of random variables T W P

hot sun 0.4
hot rain 0.1

= Probabilistic models:
= (Random) variables with domains
= Assignments are called outcomes cold sun 0.2

» Joint distributions: say whether assignments cold rain 0.3
(outcomes) are likely

= Normalized: sum to 1.0
= l|deally: only certain variables directly interact

Constraint over TW

T W P
« Constraint satisfaction problems: hot sun T
= Variables with domains .
. _ hot rain F
» Constraints: state whether assignments are
possible COId sun F
= |deally: only certain variables directly interact cold rain T




Events

= An eventis a set E of outcomes

P(F) = > P(z1...7n)
(z1...zp)ek

= From a joint distribution, we can calculate the
probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about are partial
assignments, like P(T=hot)

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




s P(+x, +y) ?

Quiz: Events

P(X.,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




n P(+x, +y) ?

m P(+X) ?

Quiz: Events

IClicker:
A: 0.2

B: 0.3
C:0.5
D:1.0

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




s P(+x, +y) ?

L P(+X) ?

= P(-yOR +x)?

Quiz: Events

IClicker:
A: 0.2

B:0.4
C:0.6
D: 0.9

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P, w)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

—)
P(t) = Z P(t.s)

——
P(s) = Z P(t, s)
¢

P(X1=um1) =) P(X1; ==z, Xo=xp)

(1)

T P
hot 0.5
cold 0.5

P(W)
W P
sun 0.6
rain 0.4




Quiz: Marginal Distributions

P(X,Y)
X Y P >
+X +y 0.1 P(x) = Z P(z,y)
+X -y 0.5 1y
-X +y 0.2
-X -y 0.2 >
P(y) =) P(z,y)

IClicker:

P(X)
X P
+X ?
-X

[ 2 ( }/)
Y P
ty
-y

A: 0.05
B: 0.1
C:.0.5
D: 0.6



Quiz: Marginal Distributions

P(X)
P(X,Y) X P
Y P — X 0.6
+y 0.1 P(x) = Z P(z,y) X 04
-y 0.5 Y P ( Y)
+y 0.2 v >
v | 0e _— vy | 0.3
P(y) =) P(z,y) v 1 07
T




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= In fact, this is taken as the definition of a conditional probability

Plalb) = P(a,b)

P(b)

P, w)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(W

P(a
—sr=q= LW =8T=c) 02
P(T = c¢) 0.5

=

=P(W=38,T=c)+P(W=r,T=c)
=02403 =0.5

= 0.4



s P(+x | +y) ?

P(X.Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

iz: Conditional Probabilities

IClicker:

A: 2/10
B: 1/4
C:1/3
D: 1/2



P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Normalization Trick

_ P(W =s,T=c)
- P(T = ¢)
PW =3s,T =c¢)

PW=sT=c¢)+PW=nrT=2c)
0.2

P("V = 3T = (;) :

= = 0.4 -
0.240.3 P(W|T = ¢)
W P
>
sun 0.4
_ rain 0.6
PW=1rT=c)

PIW=rT=c¢) =

F’(T = 1‘.)
. PW =nr,T =rc)
C P(W=sT=c)4+P(W=rT=1¢)
0.3
0.2+0.3

0.6




P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Normalization Trick

PIWW=sT=¢)=

SELECT the joint

probabilities
matching the
evidence

ﬁ

FW=rli=e)=

P(W =T =c)

P(T =¢)
P(W =s,T=c¢)
PW=sT=c)+P(W=nrT=01¢)

= 0.4

0.2

T 02403

P(e, W)

T W P
cold| sun | 0.2
cold| rain | 0.3

 PW=rT=c)

P(T =

c)

NORMALIZE the
selection
(make it sum to one)

ﬁ

_ P(W =rT=c)
S P(W=s5T=c)4+PW=rT=r¢)

0.3
0.2+0.3

0.6

P(W|T = ¢)
w P
sun 0.4
rain 0.6




P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

= Why does this work?

Normalization Trick

SELECT the joint NORMALIZE the
probabilities selection
matching the P(e, W) (make it sum to one)

evidence T W P
< cold| sun | 0.2 ’
cold | rain | 0.3
Pl ooy — D@ne) o Plan, o)

(.l-l J.’.2) — p —_— — p )

(22) 2axpq (z1,72)

P(W|T = ¢)
W P
sun 0.4
rain 0.6




To Normalize

= (Dictionary) To bring or restore to a normal condition

N

All entries sum to ONE

s Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1l = Example 2

W P Normalize W P ! W P T W P
sun 0.2 —pp [ SUN 0.4 hot sun 20 Normalize hot sun 0.4
rain 0.3 7=05 rain 0.6 hot rain 5 > hot rain 0.1

cold sun 10 £=30 cold sun 0.2
cold rain 15 cold rain 0.3




Probabilistic Inference

= Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

= We generally compute conditional probabilities

= P(ontime | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
= Evidence variables: Ey... B =e1...€ X1, Xn,.... X, variables, too
= Query* variable: ) All variables P(Qlel .. elst)
= Hidden variables: Hy ... Hy
= Step 1: Select the = Step 2: Sum out H to get joint of = Step 3: Normalize
entries consistent with Query and evidence

the evidence

7
Z=> P(Q.e e
1]

P(Qler--er) = 5 P(Qre: - ex)

= Ciny
0.3

3
-1 0.25

S | o.ovr}
1 | oz |

h_i-‘i ‘0-0_1— €272




Inference by Enumeration

. P(W)? S T W P
p(W=sun) = 0.3+0.1+0.1+0.15 = 0.65 summer| hot | sun | 0.30
p(W=rain) = 0.05+0.05+0.05+0.2 = 0.35 summer | hot rain | 0.05

summer | cold sun | 0.10

« P(W | winter)? summer | cold | rain | 0.05

p(W=sun , winter) = 0.1+0.15 = 0.25 winter hot sun 0.10

p(W=rain , winter) = 0.05+0.2 = 0.25

( , :
p(W=sun | winter) = 0.25/0.25+0.25 = 0.5 winter | hot | rain | 0.05
p(W=rain | winter) = 0.25/0.25+0.25 = 0.5 winter | cold sun | 0.15

winter | cold rain 0.20

= P(W | winter, hot)?

p(W=sun , winter, hot) = 0.1

p(W=rain , winter, hot) = 0.05

p(W=sun | winter, hot) = 0.1/0.1+0.05 = 2/3
p(W=rain | winter, hot) = 0.05/0.1 +0.05 = 1/3



Inference by Enumeration

= Obvious problems:

= Worst-case time complexity O(dn)
= Space complexity O(dn) to store the joint distribution

= What about continuous distributions?



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(zly) = P(z,y) < ran="00

g



The Product Rule

P(y)P(zly) = P(z,y)

= Example:
P(D/W) P(D,W)
1)(‘1) D W P D Wy,
R > wet sun 0.1 wet sun

d sun 0.9
cun 0.8 ry u <:> dry sun
: wet rain 0.7 wet rain
rain 0.2

dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(x1,20,723) = P(z1)P(x2|z1) P(x3|71,22)

Plzi.x0,...ap) = H P(z;|lz1...2,-1)
7

= Why is this always true?

P(x142,%3) = P(23]®142) P(2142)
P(x3|x1,22)P(21,22)
= P(x3|z1,22)P(z2|21)P(21)



Bayes Rule




Bayes’ Rule

Two ways to factor a joint distribution over two variables:

That’s my rule! }

P(z,y) = P(zly) P(y) = P(y|z)P(x)

likelihood

_ P(ylz)
Py~ )

Why is this at all helpful? normalization

Dividing, we get: .
prior

P(x

Y)

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later

In the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

s Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)
P (effect)

P(causeleffect) =

= Example:

= M: meningitis, S: stiff neck

P(+m) = 0.0001 Example
P(—|_3| + m) =08 r givens
P(+s| —m) =0.01_
Pam| +5) = PEsLEmPGEm) P(+s| +m)P(+m) _ 0.8 x 0.0001
)= P(+s) ~ P(4s| +m)P(+m) + P(+s| — m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999
= Note: posterior probability of meningitis still very small =0.0008

= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes’ Rule

p)

« Given: P(DIW)

P(W) D | W | P

R P wet sun 0.1 o

cun 1 o8 dry | sun |09 IClicker:

rain 0.2 wet rain 0.7 A 06/ .72

dry | rain |03 B: .06/.78

» Whatis P(sun | dry) ? C:.72/.78

D: .72



Quiz: Bayes’ Rule

.
= Given: POIW)
IJ(H) D W P
R > wet sun 0.1
<un 0.8 dry sun 0.9
ain 0.2 wet rain 0.7
dry rain 0.3

» Whatis P(W | dry) ?

p(sun | dry) = p(dry | sun)p(sun)/p(dry) = 0.9*0.8/Z = .72/ Z
p(rain | dry) = p(dry | rain) p(rain) / p(dry) = 0.3*0.2/Z = 0.06/Z
Z = .72+.06 = .78



Ghostbusters, Revisited

= Let’s say we have two distributions:

= Prior distribution over ghost location: P(G)

= Let’s say this is uniform
= Sensor reading model: P(R | G)

= Given: we know what our sensors do

= R =reading color measured at (1,1)

= E.g. P(R=vyellow | G=(1,1)) =0.1

0.10 0.10

= We can calculate the posterior distribution
P(G|r) over ghost locations given a reading
using Bayes’ rule: 0.17 | 0.10

P(g|r) < P(r|g)P(g)




Ghostbusters with Probability

o7 R [T P

<0.014<0.01

.01<0.018 0.04

L01<0.012<0,01

L01<0.018 0.04

CINISTS REMATRTNG:
BOSTS DEMAIRINC:

£O0RE

NESSMTES

FTIROT AT

(3, S [GRTrX!




