CS 383: Artificial Intelligence

Reinforcement Learning I

Prof. Scott Niekum, UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Reinforcement Learning

s We still assume an MDP:
s Asetofstatess&E S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

s Still looking for a policy 7t(s)

= New twist: don’t know T or R, so must try out actions

= Bigidea: Compute all averages over T using sample outcomes



The Story So Far: MDPs and RL

Known MDP: Offline Solution

\_

Goal
Compute V*, Q*, m*

Evaluate a fixed policy i

Technique

Value / policy iteration

Policy evaluation

J

Unknown MDP: Model-Based

~

-

Goal
Compute V*, Q*, *

Evaluate a fixed policy i

\

Technique

VI/PI on approx. MDP

PE on approx. MDP

_/

Unknown MDP: Model-Free

Goal

Technique
Compute V*, Q*, * Q-learning
Evaluate a fixed policy @ TD learning

-

_/




Model-Free Learning

» Model-free (temporal difference) learning

= Experience world through episodes

L / / /1 / it '
(s,a,r,s",a,r',s", a" ,r", s". ..

.

« Update estimates each transition (s, a,r,s’)

= Over time, updates will mimic Bellman updates




Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qit1(s,0) & S T(s,a,8) |R(s,a,8) 45 maxQy(s,a)
of Q

= But can’t compute thié update without knowing T, R

» Instead, compute average as we go

= Receive a sample transition (s,a,r,s’)
= This sample suggests
/
Q(s,a) =r+~ max Q(s', a")
(1
= But we want to average over results from (s,a) since transitions are stochastic
= So keep a running average

Q(s,a) — (1 —a)QR(s,a) + () [r+~ max Q(s', a")



s this really a good idea?

Reopening Our Critical Period as
Aduits




Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)



Video of Demo Q-Learning Auto Cliff Grid

”mmmmm
XX E

] Censsle

F

92 w.nn -l.m ~1.nr» D ~‘m
CIMRENT Q-VATIURS

Icmm WME B E




Exploration vs. Exploitation

b2 g

A
SEwe!




How to Explore?




How to Explore?

= Several schemes for forcing exploration
s Simplest: random actions (e-greedy)

= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

s Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions



Video of Demo Q-learning — Epsilon-Greedy — Crawler

L) Aprie

qui Aip 1CCONNND =" 2¢ Elop Ap I Aleps Roant g o ool Reed )

MUaE Speisd T LD T MEINAN L1

epSe- qam J|H=+ dgha | cipho+~




Exploration Functions

= When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) =u+k/n

Regular Q-Update:  ()(s,a) + R(s.a,5") +~ max Qs ah)
Modified Q-Update: Q(s,a) «a R(s.a.s") +~ max (A, a"). N[, a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!



Exploration Function — Crawler

e 34p 10C0000 step Stop o 30000 shels el speec Courda Nesel D =
a1 -7 ’(:ll‘.’lh' eaam
LRV | . 103404 — =

=
n-
[

"

L

ens eps+ o8 gam+e saa- || dpha-+
. -

Cl' sole I O] n ' » - P oo

Lateam gl Lora Nogcebecn) GAProgrem & les (R0 M ava'yed bt javamaae D20 & AL 1LKA2 AM

2ecmm BT | -




Softmax Exploration

= Base exploration on estimated action goodness
= A “soft” version of e-greedy
= Choose better actions exponentially more often
= Temperature parameter controls preference strength
= Can decrease temperature over time for greedier selection

= Good initialization / outcome ordering still affects
efficiency, but can’t permanently ruin exploration

cQ(s.a)/7

plals) = Z?:O eQ(s,a;)/T




Regret

= Even if you learn the optimal policy, you
still make mistakes along the way!

= Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

= Minimizing regret goes beyond learning to
be optimal — it requires optimally learning
to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret (usually)




Approximate Q-Learning




Generalizing Across States

= Basic Q-Learning keeps a table of all g-values

= |In realistic situations, we cannot possibly learn about
every single state!
= T00 many states to visit them all in training
= Too many states to hold the g-tables in memory
= States may even be continuous, not discrete

= Instead, we want to generalize:
= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations
This is a fundamental idea in machine learning, and we’ll see
it over and over again




Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:




No generalization

@ Przwe-[dizze C -

Br Bt howgax Segih Pogdd B MWndue Bdp

- GTQvQ. v~ ) - - - - - v [ [ Prose '” Tsa

[ Comsale 2

']
L}':v-....-s. ) Cpatedod Jl liddaauy
Pacran “iad! Sercre: =502

2cmm B E y| "% [ - A 220




2000 episodes later...

w Prewi-Blgw

Scanh Bropad Bun Medow Hep

- GrQO~ig- v - - v - ‘ [ e 0o |47 Toav

3 Censone .
24

ALITI8CT Xeisllrceneil sgent -
Comminrad 1307 amr S5 2000 Treining orsscdas
Jiowmrage Rewardes “ar law ) epixntiea: 428 K7
AVSEBgE KewNaIls OVeXr TIaininy: 59u.u2 T

i - - I - PrS

LCongasted l2.. OOt O 2LLL Tralning epoz2cos

1132 AM
wiang

AW Le




Harder maze, no generalization




Feature-Based Representations

= Solution: describe a state using a vector of features
(properties)
= Features are functions from states to real numbers (often
0/1) that capture important properties of the state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)2
= Is Pacman in a tunnel? (0/1)

= Is it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)




Linear Value Functions

= Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) =w1f1(s) +wafo(s) + ...+ wnfn(s)
Q(S: (L) — (U)lfl(sa a,)+w2f2(s, (L)—'-. . -+"w'rzfrt,(33 a‘)

= Advantage: our experience is summed up in a few powerful numbers

= Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

QUs,0) = wifi(s @) fwafals, )t Aunfals,a)

s Q-learning with linear Q-functions:

transition = (s,a,r,s’)

difference = r 4 ~ maxQ(s,a’)| — Q(s,a)
Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; «— w; + o [difference] f;(s,a)  Approximate Q's

= Intuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were activated:
lower the value of all states with that state’s features

s Formal justification: online least squares



Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — L.0fger(s,a)
N 4

fpor(s,NORTH) = 0.5
a = NORTH !
S
r= -9
fasr(s,NORTH) = 1.0
Q(s, NORTH) = +1 09
r+ymaxQ(s’,a') =—-9+0 e
a/
transition = (s,a,r,s’) IClicker:
difference = r + ~ ;wng<’g(.s’.(';.’)‘ Q(s,a) What is the new A:-1.0 C:3.0

value of WpoT ? _ _
w; «— w; + o [difference] f;(s, a) B: 2.0 D: 4.0



Example: Q-Pacman

QR(s,a) =4.0fpor(s,a) — 1L.0fqe7r(s,a)

por(s, NORTH) = 0.5

fasr(s, NORTH) = 1.0

~

a = NORTH !
r= -9

J

Q(s, NORTH) = +1
r+ymaxQ(s’,a’) = =9 +0

Q(s'.)=0
0= 0.9 2(s",+)

[ difference = —10 >

wpor < 4.0 + &[—10]0.5
wast — —1.0 + ()4[—10]1.0

QR(s,a) = 3.0fpor(s,a) —3.0fcer(s,a)



Approximate Q-Learning

“ v Gr Qg . S - . Y ‘ ~ 3 [ 5,00 | &7 T
[ 2% €2138 Sacrran S - -
a s 2
SCORE:
F Censels O = w ol ¢ . -
DireCioralGhes: »-

Segllii g VU spisodes ol Jleinling




Q-Learning and Least Squares




Linear Approximation: Regression™

40r

20

f1(z)

Prediction: Prediction:
y = wo + wi f1(x) y; = wo + wi f1(x) + wofo(x)




Optimization: Least Squares®

2
total error = Zﬁ (y; — ‘3;‘.,;)2 =) (yz' — Zuv.ufz.‘(:w))
; k

.z.

Observation Error or “residual

Prediction ?j




Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:
2

s

error(w) = — ( — > wyfr (@) )
k ,

/

d error(w) _ (

\
Y — Z uv‘,{j}:(r) ) fm(x)

,l;_f

ow m

/

Wy, +— W + & (?/ - Z wi fr (’)) fm(x)
k ;

Approximate g update explained:

W — Win + & [/ + m(?y\ @ (-5',.- ‘—7',) — (s, 0)] fm(s,a)

“target” “prediction”



Overfitting: Why Limiting Capacity Can Help*




Policy Search




Policy Search

= Problem: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V / Q best (unless it is exact)

E.g. your evaluation functions from project 2 were probably poor estimates of future rewards, but
they still produced good decisions

Q-learning’s priority: get Q-values close (modeling)
Action selection priority: get ordering or “shape” of Q-values right (prediction)
WEe’'ll see this distinction between modeling and prediction again later in the course

= Solution: learn policies that maximize rewards, not the values that predict them

= Policy search: start with an ok solution then fine-tune by hill climbing on feature weights



Policy Search

= Simplest policy search:

= Start with an initial linear value function or Q-function
= Nudge each feature weight up and down and see if your policy is better than before

= Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= If there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change multiple
parameters...



