CS 383: Artificial Intelligence

Reinforcement Learning II

Prof. Scott Niekum, UMass Amherst

Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π TD learning

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

■ Update estimates each transition (s, a, r, s')

Over time, updates will mimic Bellman updates

Q-Learning

We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests

$$Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$$

- But we want to average over results from (s,a) since transitions are stochastic
- So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'} Q(s',a')\right]$$

Is this really a good idea?

Reopening Our Critical Period as Adults

in Article, News February 28th, 2014

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?

How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε , act randomly
 - With (large) probability 1- ε , act on current policy
- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

■ Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

■ Note: this propagates the "bonus" back to states that lead to unknown states as well!

Exploration Function – Crawler

Softmax Exploration

Base exploration on estimated action goodness

- A "soft" version of ε-greedy
- Choose better actions exponentially more often
- Temperature parameter controls preference strength
- Can decrease temperature over time for greedier selection
- Good initialization / outcome ordering still affects efficiency, but can't permanently ruin exploration

$$p(a|s) = \frac{e^{Q(s,a)/\tau}}{\sum_{i=0}^{n} e^{Q(s,a_i)/\tau}}$$

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret (usually)

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
 - States may even be continuous, not discrete
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

No generalization

2000 episodes later...

Harder maze, no generalization

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$
$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition } = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad \begin{aligned} & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned} \quad \text{Approximate Q's} \end{aligned}$$

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were activated: lower the value of all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $f_{DOT}(s, NORTH) = 0.5$

 $f_{GST}(s, NORTH) = 1.0$

a = NORTH r = -9

$$Q(s, \text{NORTH}) = +1$$
$$r + \gamma \max_{a'} Q(s', a') = -9 + 0$$

$$\alpha = 0.2$$

$$Q(s',\cdot)=0$$

 $\begin{aligned} & \text{transition} &= (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & w_i \leftarrow w_i + \alpha \text{ [difference] } f_i(s, a) \end{aligned}$

What is the new value of w_{DOT} ?

iClicker:

A: -1.0 C: 3.0

B: 2.0 D: 4.0

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $f_{DOT}(s, NORTH) = 0.5$

 $f_{GST}(s, NORTH) = 1.0$

$$Q(s, NORTH) = +1$$

$$r + \gamma \max_{a'} Q(s', a') = -9 + 0$$

$$\alpha = 0.2$$

$$Q(s',\cdot)=0$$

$$difference = -10$$

$$w_{DOT} \leftarrow 4.0 + \alpha[-10]0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha[-10]1.0$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

Approximate Q-Learning

Q-Learning and Least Squares

Linear Approximation: Regression*

Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares*

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Observation \hat{y}

Prediction \hat{y}

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
"target" "prediction"

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best (unless it is exact)
 - E.g. your evaluation functions from project 2 were probably poor estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering or "shape" of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...