CS 383: Artificial Intelligence

Reinforcement Learning

Prof. Scott Niekum

UMass Amherst

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Value lteration

= Bellman equations characterize the optimal values:

V*(s) = max Y T(s,a,s") [-R(S: a,s") +~v V(s

= Value iteration computes them:

‘/’k+1 (S) = maax Z} T(q’ @ S,) [R(Q‘ a, 3,) -+ VL(S,)]

5

= Value iteration is just a fixed point solution method

= ... though the V, vectors are also interpretable as time-limited values

Reinforcement Learning

\

Agent \

State: s Acti .
Reward: r ctions: a
Environment
s Basicidea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

s Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial Hand Coded Walk Learned Walk

Initial (19.5 cm/s) After learning (28 cm/s)

Example: Atari from raw pixels

Before training

peaceful swimming

Example: Robot manipulation

Visual Test \

Positionl . .
\ real time : ghitonomous execution

Reinforcement Learning

= Still assume a Markov decision process (MDP):
= Asetofstatess&E S

= A set of actions (per state) A 6
= A model T(s,a,s’) \

= A reward function R(s,a,s’)

= Still looking for a policy m(s) swhae

s New twist: don’t know T or R

= l.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

s Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of 7'(s,a, s")
» Discover each 72(s, a.s") when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before

Example: Model-Based Learning

Input Policy

Observed Episodes (Training)

Episode 1

-

-

B, east, C, -1
C, east, D, -1
D, exit, x, +10

~N

J

Assume:y =1

Episode 3

-

-

E, north, C, -1
C,east, D, -1
D, exit, x, +10

~N

Episode 2

-

J

-

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 4

-

KE, north, C, -1

C, east, A, -1
A, exit, x,-10

Learned Model

T(s.a.s")
[T(B, east,C)=? h
T(C, east, D) =
T(C, east, A) =
_ W,
IClicker:
A: 0.25
B: 0.5
C:0.75

D: 1.0

Example: Model-Based Learning

Input Policy

Observed Episodes (Training)

Episode 1

-

Assume:y =1

-

B, east, C, -1
C, east, D, -1
D, exit, x, +10

~N

J

Episode 3

-

-

E, north, C, -1

C, east,
D, exit,

D, -1
X, +10

~N

Episode 2

-

J

-

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Learned Model

T(s.a.s")

[T(B, east, C) =1.00 h

T(C, east, D) =0.75

Episode 4

-

KE, north, C, -1

C, east, A, -1
A, exit, x,-10

T(C, east, A) =0.25
_ W,

R(s,a,s")

[

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

- J

Example: Expected Age

Goal: Compute expected age of CS 383 students

Known P(A))

E[A] = Z Pla)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this Pla) — num(a) Why does this
(”’;' _ T
work? Because N EIA 1 v>—‘ work? Because
eventually you A_ A] ~ N 2% samples appear
learn the right E[A] = Z P(a)-a ' with the right
model. a

_ j \ frequencies.

—

Model-Free Learning

Passive Reinforcement Learning

" |

Passive Reinforcement Learning

= Simplified task: policy evaluation
= Input: a fixed policy m(s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= Goal: learn the state values

= In this case:
= Learner is “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

s Goal: Compute values for each state under &t

= |ldea: Average together observed sample values
s Act according to i

= Every time you visit a state, write down what the sum of
discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Example: Direct Evaluation

Input Policy Observed Episodes (Training) Output Values

Assume:y =1

Episode 1

4 B, east, C, -1

C, east, D, -1
D, exit, x, +10

-

~N

J

Episode 3

[E, north, C, -1

C,east, D, -1

D, exit, x, +10
\

~N

Episode 2

-

J

-

B, east, C, -1
C, east, D, -1
D, exit, x, +10

~N

J

Episode 4

-

[E, north, C, -1

C, east, A, -1
A, exit, x,-10

~N

IClicker:

J

A: 4
B: 8

C:12
D: 16

Input Policy

Assume:y =1

Example: Direct Evaluation

Observed Episodes (Training)

Episode 1

4 B, east, C, -1

C, east, D, -1
D, exit, x, +10

~N

_ J
Episode 3
[E, north, C, -1)
C,east, D, -1
D, exit, x, +10
_ J

Episode 2

-

-

B, east, C, -1
C, east, D, -1
D, exit, x, +10

~N

J

Episode 4

-

[E, north, C, -1

C, east, A, -1
A, exit, x,-10

~N

J

Output Values

Problems with Direct Evaluation

= What’s good about direct evaluation? Output Values

= It’s easy to understand

= It doesn’t require any knowledge of T, R

= It eventually computes the correct average values,
using just sample transitions

= What bad about it?

= |t wastes information about state connections

If Band E both go to C
under this policy, how can
= So, it takes a long time to learn their values be different?

= Each state must be learned separately

Why Not Use Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy: S
= Each round, replace V with a one-step-look-ahead layer over V (s)
"’bﬂ-(S) B O S, TE(S)

Vi1 (s) « 3 T(s,m(s), 8)[R(s,7(s),8") + 7V (sH] SHs)hs
h‘l

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
= In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

= We want to improve our estimate of V by computing these averages:

Viga(s) < D T(s,m(s),s)[R(s,7(s),s") + vV ()]
h‘,

» ldea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s),s7) + Vi (s7)

samples = R(s,m(s),55) + ¥V (s55)

sampley,

rewind time to get sample
after sample from state s.

1
Vi 1(8) « =% sample; Almost! But we can’t

Temporal Difference Learning

Temporal Difference Learning

= Bigidea: learn from every experience!

S
= Update V(s) each time we experience a transition (s, a, s, r) 7i(s) §

= Likely outcomes s’ will contribute updates more often

= Temporal difference learning of values

= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s, m(s),s) + ~V7(s)
Update to V(s): VT(s) «+ (1 —)V (s) + () sample

Same update: VT(s) <+ V7 (s) + a(sample — V7 (s))

Exponential Moving Average

= Exponential moving average

» The running interpolation update: In=(1—) Tpn_1+a-zn
= Makes recent samples more important:

Tp+(1—a) zp 1+ (1 —a) zp_o+...
l1+(1—a)+(1—a)*+...

:En p—

= Forgets about the past (distant past values were wrong anyway)

» Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Observed Transitions
States

[B, east, C, -2] [C, east, D, -2]

V() = (1= a)V7(s) +a [R(s,7(5), 5) + 7V ()]
IClicker:
A:3 C.6
B: 4 D: 8

Assume:y=1,a=1/2

Problems with TD Value Learning

= 1D value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

=« However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmaxQ(s,a)
a

Q(s,a) = l: T(s,a,s) —R(.s_. a,s') + ‘\(s/)

= ldea: learn Q-values, not values

s Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= You choose the actions now
a Goal: learn the optimal policy / values

= In this case:
= Learner makes choices!
s Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and find
out what happens...

Detour: Q-Value lteration

= Value iteration: find successive (depth-limited) values
« Start with V4(s) =0, which we know is right

= GivenV,, calculate the depth k+1 values for all states:

Vit-1(s) = max Z'T(.s, a,s) [~R'(S> a,s') 4+~ ""};(S’)]

= But Q-values are more useful, so compute them instead
« Start with Qg(s,a) = 0, which we know is right
« Given Q,, calculate the depth k+1 g-values for all g-states:

Qut1(s,0) & L T(s,0,8) |R(s,a,8) 47 max Qu(s',)

Q-Learning

= Q-Learning: sample-based Q-value iteration
Qit1(s,0) & S T(s,a,8) | R(s,a,8) 45 maxQu(s,a)|
of Q

= Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
« Consider your old estimate: Q(s,a)

= Consider your new sample estimate:

sample = R(s.a,s') + ~ max Qs a")
1

= Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (o) [sample]

Q=VALUES AFIER 10C0 EPISCGDES

Demo of Q-Learning -- Gridworld

v 0.00 v v
P .

0.00 0.00 0.00 0.00 D.00 3
2 4 .
ac P
. CURRENT Q—-VAILIES

v
, — —
-

Demo of Q-Learning -- Crawler

CERINS L AUE T I - o) L1 I IHAAN ANFAT =2 1N HeaN g
[|e® e Iﬂ' Tsa~r
WL L) R

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

