
CS 383: Artificial Intelligence 
Markov Decision Processes II

Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have been
taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of (discounted) rewards

Recap: MDPs

▪ Markov decision processes:

▪ States S

▪ Actions A

▪ Transitions P(s’|s,a) (or T(s,a,s’))

▪ Rewards R(s,a,s’) (and discount γ)

▪ Start state s0

▪ Quantities:

▪ Policy = map of states to actions

▪ Utility = sum of discounted rewards

▪ Values = expected future utility from a state (max node)

▪ Q-Values = expected future utility from a q-state (chance node)

a

s

s, a

s,a,s’
s’

Optimal Quantities

▪ The value (utility) of a state s:

V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:

π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a  
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Gridworld Values V*

Gridworld: Q*

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a simple
one-step lookahead relationship amongst optimal utility values

▪ These are the Bellman equations, and they characterize optimal
values in a way we’ll use over and over

	

a

s

s, a

s,a,s’
s’

Value Iteration

▪ Bellman equations characterize the optimal values:

▪ Value iteration computes them:

▪ Value iteration is just a fixed point solution method

▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Example: Value Iteration

 0 0 0

 2 1 0

Assume no discount!

Q2(cool, slow) = 1.0(1 + 2) = 3
<latexit sha1_base64="YNerfKoRE2KM7Zws7/KJz3vDzWk=">AAACCHicbZDLSsNAFIYn9VbrLerShYNFqCglSQXdCEU3LluwF2hDmEyn7dBJJsxMlBK6dOOruHGhiFsfwZ1v46TNQlt/GPj4zzmcOb8fMSqVZX0buaXlldW1/HphY3Nre8fc3WtKHgtMGpgzLto+koTRkDQUVYy0I0FQ4DPS8kc3ab11T4SkPLxT44i4ARqEtE8xUtryzMO655Qw5+wMSsYfTuAVtMsWLNmnTsoVzyxaZWsquAh2BkWQqeaZX90ex3FAQoUZkrJjW5FyEyQUxYxMCt1YkgjhERqQjsYQBUS6yfSQCTzWTg/2udAvVHDq/p5IUCDlOPB1Z4DUUM7XUvO/WidW/Us3oWEUKxLi2aJ+zKDiME0F9qggWLGxBoQF1X+FeIgEwkpnV9Ah2PMnL0LTKduVslM/L1avszjy4AAcgRKwwQWogltQAw2AwSN4Bq/gzXgyXox342PWmjOymX3wR8bnDygFlZE=</latexit>

Q2(cool, fast) = 0.5(2 + 2) + 0.5(2 + 1) = 3.5
<latexit sha1_base64="TWRvJp+xzfRq+fv0eqbiuYdjbCM=">AAACFHicbZDLSsNAFIYn9VbrLerSzWARWiohSS26EYpuXLZgL9CWMplO2qGTTJiZCCX0Idz4Km5cKOLWhTvfxmmbhbb+MPDxn3M4c34vYlQq2/42MmvrG5tb2e3czu7e/oF5eNSUPBaYNDBnXLQ9JAmjIWkoqhhpR4KgwGOk5Y1vZ/XWAxGS8vBeTSLSC9AwpD7FSGmrb5bqfbeAOWfn0EdSFeE1tK1KwS25RVhK0Zm5ZavSN/O2Zc8FV8FJIQ9S1frmV3fAcRyQUGGGpOw4dqR6CRKKYkamuW4sSYTwGA1JR2OIAiJ7yfyoKTzTzgD6XOgXKjh3f08kKJByEni6M0BqJJdrM/O/WidW/lUvoWEUKxLixSI/ZlBxOEsIDqggWLGJBoQF1X+FeIQEwkrnmNMhOMsnr0LTtZyy5dYv8tWbNI4sOAGnoAAccAmq4A7UQANg8AiewSt4M56MF+Pd+Fi0Zox05hj8kfH5A2pOmBc=</latexit>

V2(cool) = max(3, 3.5) = 3.5
<latexit sha1_base64="ysdosB25Avn2MYva17xLkWNIibI=">AAACBnicbVBNS8MwGE7n15xfVY8iBIcwQUq7KXoRhl48TnAfsJWSZukWljYlScVRdvLiX/HiQRGv/gZv/hvTrQedPhDy5Hnelzfv48eMSmXbX0ZhYXFpeaW4Wlpb39jcMrd3WpInApMm5oyLjo8kYTQiTUUVI51YEBT6jLT90VXmt++IkJRHt2ocEzdEg4gGFCOlJc/cb3nVCuacHcELGKL7Su0Y1qzT7KUvzyzblj0F/EucnJRBjoZnfvb6HCchiRRmSMquY8fKTZFQFDMyKfUSSWKER2hAuppGKCTSTadrTOChVvow4EKfSMGp+rMjRaGU49DXlSFSQznvZeJ/XjdRwbmb0ihOFInwbFCQMKg4zDKBfSoIVmysCcKC6r9CPEQCYaWTK+kQnPmV/5JW1XJqVvXmpFy/zOMogj1wACrAAWegDq5BAzQBBg/gCbyAV+PReDbejPdZacHIe3bBLxgf3/awlPI=</latexit>

Example: Value Iteration

 0 0 0

 2 1 0

 3.5 ?

Assume no discount!

A: 2.0

B: 2.5

C: 3.0

D: 3.5

iClicker:

Example: Value Iteration

 0 0 0

 2 1 0

 3.5 2.5 0

Assume no discount!

Policy Methods

Policy Evaluation

Fixed Policies

▪ Expectimax trees max over all actions to compute the optimal values

▪ If we fixed some policy π(s), then the tree would be simpler – only one action per state

▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

π(s)

s

s, π(s)

s, π(s),s’
s’

Do the optimal action Do what π says to do

Utilities for a Fixed Policy

▪ Another basic operation: compute the utility of a state s under a
fixed (generally non-optimal) policy

▪ Define the utility of a state s, under a fixed policy π:

Vπ(s) = expected total discounted rewards starting in s and following π

▪ Recursive relation (one-step look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’
s’

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

▪ How do we calculate the V’s for a fixed policy π?

▪ Idea 1: Turn recursive Bellman equations into updates

	 (like value iteration)

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system

▪ Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’

Policy Extraction

Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?

▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?

▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!

▪ In fact, you don’t even need a model!

Policy Iteration

Problems with Value Iteration

▪ Value iteration repeats the Bellman updates:

▪ Problem 1: It’s slow – O(S2A) per iteration

▪ Problem 2: The “max” at each state rarely changes

▪ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

k=0

Noise = 0.2

Discount = 0.9

Living reward = 0

k=1

Noise = 0.2

Discount = 0.9

Living reward = 0

k=2

Noise = 0.2

Discount = 0.9

Living reward = 0

k=3

Noise = 0.2

Discount = 0.9

Living reward = 0

k=4

Noise = 0.2

Discount = 0.9

Living reward = 0

k=5

Noise = 0.2

Discount = 0.9

Living reward = 0

k=6

Noise = 0.2

Discount = 0.9

Living reward = 0

k=7

Noise = 0.2

Discount = 0.9

Living reward = 0

k=8

Noise = 0.2

Discount = 0.9

Living reward = 0

k=9

Noise = 0.2

Discount = 0.9

Living reward = 0

k=10

Noise = 0.2

Discount = 0.9

Living reward = 0

k=11

Noise = 0.2

Discount = 0.9

Living reward = 0

k=12

Noise = 0.2

Discount = 0.9

Living reward = 0

k=100

Noise = 0.2

Discount = 0.9

Living reward = 0

Policy Iteration

▪ Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

▪ This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions

Policy Iteration

▪ Evaluation: For fixed current policy π, find values with policy evaluation:

▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction

▪ One-step look-ahead:

Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values)

▪ In value iteration:

▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

▪ In policy iteration:

▪ We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

▪ The new policy will be better (or we’re done)

▪ Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

▪ So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

▪ These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

▪ Actions: Blue, Red

▪ States: Win, Lose
No discount

100 time steps

Both states have
the same value

W L
$1

1.0

$1

1.0

0.25 	 $0

0.75

$2

0.75 	 $2

0.25

$0

Offline Planning

▪ Solving MDPs is offline planning

▪ You determine all quantities through computation

▪ You need to know the details of the MDP

▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

Both states have
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 	 $0

0.75

$2

0.75 	 $2

0.25

$0

Online Planning

▪ Rules changed! Red’s win chance is different.

Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

A: Blue

B: Red

iClicker:

What Just Happened?

▪ That wasn’t planning, it was learning!

▪ Specifically, reinforcement learning

▪ There was an MDP, but you couldn’t solve it with just computation

▪ You needed to actually act to figure it out

▪ Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

