CS 383: Artificial Intelligence

Markov Decision Processes Il

Prof. Scott Niekum — UMass Amherst

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example: Grid World

A maze-like problem
= The agent livesin a grid

= Walls block the agent’s path

Noisy movement: actions do not always go as planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= Ifthereis a wall in the direction the agent would have been
taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)

= Big rewards come at the end (good or bad)

Goal: maximize sum of (discounted) rewards

Recap: MDPs

= Markov decision processes:
= States S
= Actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount y)
« Start state s,

= Quantities:
= Policy = map of states to actions
= Utility = sum of discounted rewards
= Values = expected future utility from a state (max node)
= Q-Values = expected future utility from a g-state (chance node)

Optimal Quantities

= The value (utility) of a state s:
V*(s) = expected utility starting in s and

sisa
acting optimally state
- (s,a)is a
= The value (utility) of a g-state (s,a): g-state

Q*(s,a) = expected utility starting out 7\ |
having taken action a from state s and 5,8 (s,a,8)is a
(thereafter) acting optimally , transition

= The optimal policy:
nt*(s) = optimal action from state s

Gridworld Values V*

|IHIHHI|IIIII||HIII'EII‘IIIIIII

VALUES AFTER 100 ITERATIONS

The Bellman Equations

How to be optimal:

The Bellman Equations

= Definition of “optimal utility” via expectimax recurrence gives a simple
one-step lookahead relationship amongst optimal utility values

V*i(s) = max ¢ *(s,a)

Q*(s,a) =) T(s,a, s') ~R(.s, a,s')+ -\(J)

~f

V*(s) = max Y. T(s,a,5") [R(s,a,8') + V()]
A 5.’ -

= These are the Bellman equations, and they characterize optimal
values in a way we’ll use over and over

Value lteration

= Bellman equations characterize the optimal values:

V*(s) = max Y T(s,a,s") [-R(S: a,s") +~v V(s

= Value iteration computes them:

‘/’k+1 (S) = maax Z} T(q’ @ S,) [R(Q‘ a, 3,) -+ VL(S,)]

5

= Value iteration is just a fixed point solution method

= ... though the V, vectors are also interpretable as time-limited values

Example: Value Iteration

& & &

‘\ -) J e’ ol)
- war R
ooy s p - Gy - -
e Fast D5 +2 N 1 &
1? 2 1 O * QOverheated
§ l ' t ;.'-'

Assume no discount!

" [’ ’ °] Vip1(s) max ¥ T(s, a. ') [R(s,a.5) + 7 V()
s

Qz(cool, slow) = 1.0(1 +2) =3 » Va(cool) = max(3,3.5) = 3.5
Q2 (cool, fast) =0.5(2+2) +0.5(2+ 1)

Example: Value Iteration

) 5 =
Fas D6 2

Assume no discount!

Ve 0 0 0 iIClicker:
A:2.0
B: 2.5
""}c+1(5) — maax Z: T(s.a, .s") [R(s, (1. s,) -+ ~ V;(g’)] C: 3.0
< D: 35

Example: Value Iteration

Qverheated

Assume no discount!

Viet1 () &= mpx 3T 0. 8) [RCs, 0 8) + 7 Vi)

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what i says to do

= Expectimax trees max over all actions to compute the optimal values

s If we fixed some policy 1t(s), then the tree would be simpler — only one action per state

= ... though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

= Another basic operation: compute the utility of a state s under a
fixed (generally non-optimal) policy

s Define the utility of a state s, under a fixed policy m:

V7(s) = expected total discounted rewards starting in s and following i

= Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,7(s),s)[R(s,7(s),s") + V7 (s)]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy wt? S

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

VE(s) =0
Vit 1(s) « > T(s,m(s), s)[R(s,7(s),s") + vV ()]
h"

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

= Let’s imagine we have the optimal values V*(s) ...
0.95 » 0.96 » ND.98 » 1.00
= How should we act?
« 0.89 -1.00
= It’s not obvious!
o] 0.92 { 0.91 « 0.90 0.80
= We need to do a mini-expectimax (one step) :

77 (s) = arg max E T (s, a, 3')[R(3, a, 5’) + 'j«'V*(s')]
a
","

= This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let’s imagine we have the optimal g-values: mm% »

How should we act?

= Completely trivial to decide!

7" (s) = arg Ct;rlaxQ"‘(s,a)

Important lesson: actions are easier to select from g-values than values!
In fact, you don’t even need a model!

Policy Iteration

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

S
A
.’r ! , / ~7 /" ', A
Vieg1(8) max E., T(s,a,s") [R(.s, a,s) + v V(s)]

s Problem 1: It’s slow — O(S2A) per iteration

= Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

VALUES AFTER 0 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Cridwor d Display

0.72 »| 0.384)

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridwor/d Display

0.47 4 0.27

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridwnorld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= It’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

= Evaluation: For fixed current policy m, find values with policy evaluation:

= Iterate until values converge:

Vi (s) & Y T(s,mi(s), ") [R(s,mi(s),) + 7 V()]
5/

= Improvement: For fixed values, get a better policy using policy extraction

= One-step look-ahead:

m+1(s) = arg (Twaxz'T(s, a,s') {H.(s, a,s) + A,,\,-""Ti(s’)J
5!

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy

= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

= The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

= SO0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

= These all look the same!
= They basically are — they are all variations of Bellman updates
= They all use one-step lookahead expectimax fragments
= They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

s Actions: Blue, Red 4)

No discount
= States: Win, Lose 100 time steps

Both states have
the same value

- J

1.0 ' 1.0

Offline Planning

= Solving MDPs is offline planning 4 |)
No discount
» You determine all quantities through computation 100 time steps
= You need to know the details of the MDP Both states have
= You do not actually play the game! the same value
- J
/ Value \
Play Red 150
Play Blue 100

o /

Online Planning

= Rules changed! Red’s win chance is different.

Let’s Play!

IClicker:
A: Blue

B: Red

SO SO SO $2 SO
$2 SO0 SO SO SO

What Just Happened?

= That wasn’t planning, it was learning!
= Specifically, reinforcement learning
= There was an MDP, but you couldn’t solve it with just computation

= You needed to actually act to figure it out

= Important ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes

Sampling: because of chance, you have to try things repeatedly

= Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

