
CS 383: Artificial Intelligence 
Markov Decision Processes II

Prof. Scott Niekum — UMass Amherst 
[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Example: Grid World

▪ A maze-like problem 

▪ The agent lives in a grid 

▪ Walls block the agent’s path 

▪ Noisy movement: actions do not always go as planned 

▪ 80% of the time, the action North takes the agent North  

▪ 10% of the time, North takes the agent West; 10% East 

▪ If there is a wall in the direction the agent would have been 
taken, the agent stays put 

▪ The agent receives rewards each time step 

▪ Small “living” reward each step (can be negative) 

▪ Big rewards come at the end (good or bad) 

▪ Goal: maximize sum of (discounted) rewards



Recap: MDPs

▪ Markov decision processes: 
▪ States S 
▪ Actions A 
▪ Transitions P(s’|s,a) (or T(s,a,s’)) 
▪ Rewards R(s,a,s’) (and discount γ) 
▪ Start state s0 

▪ Quantities: 
▪ Policy = map of states to actions 
▪ Utility = sum of discounted rewards 
▪ Values = expected future utility from a state (max node) 
▪ Q-Values = expected future utility from a q-state (chance node)
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Optimal Quantities

▪ The value (utility) of a state s: 
V*(s) = expected utility starting in s and 

acting optimally 

▪ The value (utility) of a q-state (s,a): 
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally 

▪ The optimal policy: 
π*(s) = optimal action from state s
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Gridworld Values V*



Gridworld: Q*



The Bellman Equations

How to be optimal: 

    Step 1: Take correct first action 

    Step 2: Keep being optimal



The Bellman Equations

▪ Definition of “optimal utility” via expectimax recurrence gives a simple 
one-step lookahead relationship amongst optimal utility values 

▪ These are the Bellman equations, and they characterize optimal 
values in a way we’ll use over and over 
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Value Iteration

▪ Bellman equations characterize the optimal values: 

▪ Value iteration computes them: 

▪ Value iteration is just a fixed point solution method 
▪ … though the Vk vectors are also interpretable as time-limited values
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Example: Value Iteration

  0             0             0

  2             1             0

Assume no discount!

Q2(cool, slow) = 1.0(1 + 2) = 3
<latexit sha1_base64="YNerfKoRE2KM7Zws7/KJz3vDzWk=">AAACCHicbZDLSsNAFIYn9VbrLerShYNFqCglSQXdCEU3LluwF2hDmEyn7dBJJsxMlBK6dOOruHGhiFsfwZ1v46TNQlt/GPj4zzmcOb8fMSqVZX0buaXlldW1/HphY3Nre8fc3WtKHgtMGpgzLto+koTRkDQUVYy0I0FQ4DPS8kc3ab11T4SkPLxT44i4ARqEtE8xUtryzMO655Qw5+wMSsYfTuAVtMsWLNmnTsoVzyxaZWsquAh2BkWQqeaZX90ex3FAQoUZkrJjW5FyEyQUxYxMCt1YkgjhERqQjsYQBUS6yfSQCTzWTg/2udAvVHDq/p5IUCDlOPB1Z4DUUM7XUvO/WidW/Us3oWEUKxLi2aJ+zKDiME0F9qggWLGxBoQF1X+FeIgEwkpnV9Ah2PMnL0LTKduVslM/L1avszjy4AAcgRKwwQWogltQAw2AwSN4Bq/gzXgyXox342PWmjOymX3wR8bnDygFlZE=</latexit>

Q2(cool, fast) = 0.5(2 + 2) + 0.5(2 + 1) = 3.5
<latexit sha1_base64="TWRvJp+xzfRq+fv0eqbiuYdjbCM=">AAACFHicbZDLSsNAFIYn9VbrLerSzWARWiohSS26EYpuXLZgL9CWMplO2qGTTJiZCCX0Idz4Km5cKOLWhTvfxmmbhbb+MPDxn3M4c34vYlQq2/42MmvrG5tb2e3czu7e/oF5eNSUPBaYNDBnXLQ9JAmjIWkoqhhpR4KgwGOk5Y1vZ/XWAxGS8vBeTSLSC9AwpD7FSGmrb5bqfbeAOWfn0EdSFeE1tK1KwS25RVhK0Zm5ZavSN/O2Zc8FV8FJIQ9S1frmV3fAcRyQUGGGpOw4dqR6CRKKYkamuW4sSYTwGA1JR2OIAiJ7yfyoKTzTzgD6XOgXKjh3f08kKJByEni6M0BqJJdrM/O/WidW/lUvoWEUKxLixSI/ZlBxOEsIDqggWLGJBoQF1X+FeIQEwkrnmNMhOMsnr0LTtZyy5dYv8tWbNI4sOAGnoAAccAmq4A7UQANg8AiewSt4M56MF+Pd+Fi0Zox05hj8kfH5A2pOmBc=</latexit>

V2(cool) = max(3, 3.5) = 3.5
<latexit sha1_base64="ysdosB25Avn2MYva17xLkWNIibI=">AAACBnicbVBNS8MwGE7n15xfVY8iBIcwQUq7KXoRhl48TnAfsJWSZukWljYlScVRdvLiX/HiQRGv/gZv/hvTrQedPhDy5Hnelzfv48eMSmXbX0ZhYXFpeaW4Wlpb39jcMrd3WpInApMm5oyLjo8kYTQiTUUVI51YEBT6jLT90VXmt++IkJRHt2ocEzdEg4gGFCOlJc/cb3nVCuacHcELGKL7Su0Y1qzT7KUvzyzblj0F/EucnJRBjoZnfvb6HCchiRRmSMquY8fKTZFQFDMyKfUSSWKER2hAuppGKCTSTadrTOChVvow4EKfSMGp+rMjRaGU49DXlSFSQznvZeJ/XjdRwbmb0ihOFInwbFCQMKg4zDKBfSoIVmysCcKC6r9CPEQCYaWTK+kQnPmV/5JW1XJqVvXmpFy/zOMogj1wACrAAWegDq5BAzQBBg/gCbyAV+PReDbejPdZacHIe3bBLxgf3/awlPI=</latexit>



Example: Value Iteration

  0             0             0

  2             1             0

  3.5            ?          

Assume no discount!

A: 2.0

B: 2.5

C: 3.0

D: 3.5

iClicker:



Example: Value Iteration

  0             0             0

  2             1             0

  3.5          2.5          0

Assume no discount!



Policy Methods



Policy Evaluation



Fixed Policies

▪ Expectimax trees max over all actions to compute the optimal values 

▪ If we fixed some policy π(s), then the tree would be simpler – only one action per state 
▪ … though the tree’s value would depend on which policy we fixed
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Do the optimal action Do what π says to do



Utilities for a Fixed Policy

▪ Another basic operation: compute the utility of a state s under a 
fixed (generally non-optimal) policy 

▪ Define the utility of a state s, under a fixed policy π: 
Vπ(s) = expected total discounted rewards starting in s and following π 

▪ Recursive relation (one-step look-ahead / Bellman equation):
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Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Policy Evaluation

▪ How do we calculate the V’s for a fixed policy π? 

▪ Idea 1: Turn recursive Bellman equations into updates 
 (like value iteration) 

▪ Efficiency: O(S2) per iteration 

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system 
▪ Solve with Matlab (or your favorite linear system solver)
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Policy Extraction



Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s) 

▪ How should we act? 
▪ It’s not obvious! 

▪ We need to do a mini-expectimax (one step) 

▪ This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values: 

▪ How should we act? 

▪ Completely trivial to decide! 

▪ Important lesson: actions are easier to select from q-values than values! 

▪ In fact, you don’t even need a model!



Policy Iteration



Problems with Value Iteration

▪ Value iteration repeats the Bellman updates: 

▪ Problem 1: It’s slow – O(S2A) per iteration 

▪ Problem 2: The “max” at each state rarely changes 

▪ Problem 3: The policy often converges long before the values
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k=0

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=1

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=2

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=3

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=4

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=5

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=6

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=7

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=8

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=9

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=10

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=11

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=12

Noise = 0.2 
Discount = 0.9 
Living reward = 0



k=100

Noise = 0.2 
Discount = 0.9 
Living reward = 0



Policy Iteration

▪ Alternative approach for optimal values: 
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence 
▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 

converged (but not optimal!) utilities as future values 
▪ Repeat steps until policy converges 

▪ This is policy iteration 
▪ It’s still optimal! 
▪ Can converge (much) faster under some conditions



Policy Iteration

▪ Evaluation: For fixed current policy π, find values with policy evaluation: 
▪ Iterate until values converge: 

▪ Improvement: For fixed values, get a better policy using policy extraction 
▪ One-step look-ahead:



Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values) 

▪ In value iteration: 

▪ Every iteration updates both the values and (implicitly) the policy 
▪ We don’t track the policy, but taking the max over actions implicitly recomputes it 

▪ In policy iteration: 

▪ We do several passes that update utilities with fixed policy (each pass is fast because we 
consider only one action, not all of them) 

▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass) 
▪ The new policy will be better (or we’re done) 

▪ Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

▪ So you want to…. 
▪ Compute optimal values: use value iteration or policy iteration 
▪ Compute values for a particular policy: use policy evaluation 
▪ Turn your values into a policy: use policy extraction (one-step lookahead) 

▪ These all look the same! 
▪ They basically are – they are all variations of Bellman updates 
▪ They all use one-step lookahead expectimax fragments 
▪ They differ only in whether we plug in a fixed policy or max over actions



Double Bandits



Double-Bandit MDP

▪ Actions: Blue, Red 

▪ States: Win, Lose
No discount 

100 time steps 

Both states have 
the same value
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Offline Planning

▪ Solving MDPs is offline planning 
▪ You determine all quantities through computation 
▪ You need to know the details of the MDP 
▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount 

100 time steps 

Both states have 
the same value

150

100

W L
$1 

1.0

$1 

1.0

0.25  $0

0.75  
$2

0.75  $2

0.25  
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Online Planning

▪ Rules changed!  Red’s win chance is different.



Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

A: Blue

B: Red

iClicker:



What Just Happened?

▪ That wasn’t planning, it was learning! 

▪ Specifically, reinforcement learning 
▪ There was an MDP, but you couldn’t solve it with just computation 
▪ You needed to actually act to figure it out 

▪ Important ideas in reinforcement learning that came up 

▪ Exploration: you have to try unknown actions to get information 
▪ Exploitation: eventually, you have to use what you know 
▪ Regret: even if you learn intelligently, you make mistakes 
▪ Sampling: because of chance, you have to try things repeatedly 
▪ Difficulty: learning can be much harder than solving a known MDP



Next Time: Reinforcement Learning!


