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Abstract

We explore the use of an interface to mark pairs of
points on two images which are in “correspondence”
with one another, as a way of collecting part annota-
tions. The interface allows annotations of visual cate-
gories that are structurally diverse, such as chairs and
buildings, where it is difficult to define a set of parts, or
landmarks, that are consistent, namable or uniquely de-
fined across all instances of the category. It allows flexi-
bility in annotation – the landmarks can be instance spe-
cific, are not constrained by language, could be many
to one, etc and requires little category specific instruc-
tions. We compare our approach to two popular meth-
ods of collecting part annotations, (1) drawing bound-
ing boxes for a set of parts, and (2) annotating a set of
landmarks, in terms of annotation setup overhead, cost,
difficulty, applicability and utility, and identify scenar-
ios where one method is better suited than the others.
Preliminary experiments suggest that such annotations
between a sparse set of pairs can be used to bootstrap
many high level visual recognition tasks such as part
discovery and semantic saliency.

Introduction

Image annotation is commonly used today in computer vi-
sion to construct training data. The exact nature of anno-
tation depends on the vision task at hand; when detection
or segmentation is the end goal, annotators typically mark
bounding boxes containing objects, or accurate object out-
lines. When the vision method involves local reasoning, a
more detailed annotation protocol may include marking lo-
cations of keypoints or landmarks.

Keypoint annotation is labor-intensive, requires careful
and possibly biasing instructions, and relies on a definition
of a standardized set of keypoints. For some categories, such
a set can be defined based on domain knowledge – e.g., fa-
cial and skeletal landmarks for animals. But for many cat-
egories it would be hard, perhaps impossible, to come up
with keypoints that are well defined, visually distinctive and
cover the object instances well. Consider for instance cate-
gories represented in Figure 1. These have one or more of
the following properties:
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Figure 1: Illustration of diversity and structural variation for
a few categories. Rectangles of same color mark local re-
gions corresponding across instances for each category.

Appearance variability of semantically related, or even
identical, parts. Consider, for instance, the category of
church buildings. While most buildings will have win-
dows, the windows will differ dramatically in their shape
and appearance across instances: rosary vs. rectangular
transparent vs. stained glass etc.

Structural flexibility of a category. Different parts can ap-
pear or not in appear in different instances. There could
be multiple appearances of a part, with the number of
appearances varying across instances. Again consider the
churches as an example. Many instances will have a spire,
others will have a dome or multiple domes, or a combina-
tion of a mausoleum and a spire; the number and location
of windows and doors will vary, etc.

Unnameable or unnamed landmarks. Even when we
have a reasonable set of semantically defined landmarks
for a category, it may not be the optimal set. We may be



missing additional landmarks that lack a standard name,
but nonetheless are repeatable, detectable and informa-
tive. For buildings, this could include meeting points
of architectural elements; for people, the characteristic
silhouette inflection where body parts meet, etc. On
the other hand, keypoints based on, say, anatomy of an
animal may be impossible to accurately observe, despite
meaningful definition.

Yet, as Figure 1 demonstrates, despite these difficulties
one can recognize corresponding points across instances in
each category, even if one would not know how to name
some of them. In this paper we describe a novel approach
to annotation that capitalizes on this idea. In our annotation
setup, one is presented with a pair of images containing in-
stances of objects in the category of interest, and marks pairs
of keypoints that are in correspondence between the images.
The nature of these keypoints and of the correspondences,
and the number of corresponding pairs for a given pair of
images, is left entirely to human judgment. The only input
from the designers of the annotation task consists of a small
set of examples of what might be considered keypoints for
the category – with a clear invitation to include other types
of keypoints that seem reasonable to the annotator. As we
show, this approach is efficient, intuitive for the users, and
flexible enough to account for structural and visual diversity
in many categories.

The sparse set of annotations obtained with our interface
can be used to “jump-start” a number of visual recogni-
tion tasks. In particular, we show preliminary experiments
to automatically discover a library of consistent visual parts
complete with an appearance detector, predict correspon-
dences between novel images, and even reason about seman-
tic saliency within an image.

Motivation

Our work is motivated by the success of part-based mod-
els for a variety of computer vision tasks. Typically, part-
based models capture the appearance of an object category
by using a separate appearance model per part, and the over-
all shape of the instances in the category by the configu-
ration of part locations (Bourdev and Malik 2009; Felzen-
szwalb and Huttenlocher 2005; Felzenszwalb et al. 2010;
Leibe, Leonardis, and Schiele 2004). This offers some flexi-
bility in shape through deformation modeling, and some ro-
bustness to occlusions through allowing missing parts. Fur-
thermore, sharing parts between related categories could sig-
nificantly increase efficiency of learning, allowing learning
new categories from very few examples (Torralba, Murphy,
and Freeman 2004). Beyond object detection, parts allow for
deeper understanding of visual categories: refined catego-
rization (car model, architectural type of building, breed of
an animal species), pose estimation, evaluation of similarity
between object instances, etc.

Many of these models rely on careful supervised annota-
tion in which humans indicate, for a large dataset, locations
(and possibly scale and orientation) of a number of prede-
fined landmarks/keypoints. For instance, images of animals,
including people, could be annotated with anatomical fea-

Figure 2: Interface to mark correspondences.

tures like head, shoulders, knees, facial features etc. The
parts are then derived as corresponding to individual land-
marks (Mori and Malik 2006) or sets of keypoints (Bourdev
and Malik 2009; Bourdev et al. 2010).

Approaches like these however crucially rely on the fact
that all the instances of the category share the same set of
keypoints. For structurally diverse categories such as chairs,
sofas, airplanes or boats, any such list is likely to be incom-
plete or inapplicable to most instances. An important issue
is that the quality of annotations suffers when such land-
marks are hard to name, for e.g. corners of sofas and chairs,
wingtips of airplanes etc. Significant effort is required to ac-
curately define the semantics of these landmarks which is
inherently noisy, or one has to rely on careful curation of
annotations after a crowd-sourced collection. These factors
severely limit the scalability of such methods to diverse cate-
gories. In this work we explore a different annotation mode,
consisting of only pairwise correspondence which can ad-
dress some of these issues.

Annotation setup

Interface. The annotator is presented with a pair of im-
ages of the category of interest, and asked to simply mark
points in the two images that match. The interface (Figure 2)
allows the user to add correspondences by first clicking on
the left image and then on the corresponding point in the
right image. In addition the user can adjust the locations of
the clicked landmarks or delete pairs them. Once the user is
done, he/she clicks a submit button.

Instructions. The user is provided with detailed instruc-
tions on how to use the interface to mark the correspon-
dences. The pairs of images shown are generic and are not

category specific. To guide the process of annotation we
show some examples of landmarks for the category of inter-
est such as those in Figure 3. We intentionally avoid detailed
instructions or provide examples of matches, in order not
to bias the users. We hope that salient landmarks will arise
naturally from multiple users labeling an image. Our initial
experiments validate this.



Figure 3: Example landmarks of church buildings.

Experiments. We experiment with two categories church

buildings and chairs in our initial study. We collected about
300 images each of churches and chairs from Flickr and
Google, which were then filtered to remove near duplicates
and images containing people. These images typically con-
tain only one prominent object, hence further annotation
such as bounding boxes were not necessary. For the church
buildings we collect annotations for 1000 random pairs of
images, each annotated with one user on Amazon Mechan-
ical Turk. This is roughy 2.2% of all possible pairs. For the
chair category we also collected annotations for 1000 pairs.
Figure 4 shows examples of such annotations.

Comparison to other annotation methods

Two popular methods that may be used to collect part anno-
tation apart from our pairwise correspondence setup are:
Drawing part bounding boxes. Annotators are asked to

draw a tight bounding box around the part of interest.
This is the staple mode of annotation for rigid parts and
objects such as frontal faces and pedestrians in many
datasets (Everingham et al. 2010; Dalal and Triggs 2005).
More recently datasets such as attributes and parts of an-
imals (Farhadi, Endres, and Hoiem 2010) also contain
bounding box annotations for parts of animals such as
heads and legs, and parts of vehicles such as wheels, etc.

Marking Keypoints/Landmarks. Annotators are asked to
mark the location and/or presence of a predefined set of
keypoints.
There are several design choices such as cost and setup

time, the importance of which depend on the application
in mind and constraints on resources, etc. We compare our
approach to collecting part annotations via pairwise corre-
spondence (PC), to drawing bounding boxes (BOX) and
keypoint annotation (KPT ).

Annotation setup time

This includes creating instructions to the annotator, such as
examples of desired output, providing clarification for am-
biguous cases, etc. The PC setup time is minimal since it
requires a few examples of a few images with landmarks
marked on them.

Since we provide no examples of correspondences, it is
worth checking if there is any agreement between annota-
tors. Figure 5, shows the set of landmarks marked by various
users on a single image for the chairs and church categories.
The high level of consistency across annotators shows that

Figure 5: Landmarks marked by various users on several
images of chairs and church buildings. Each color denotes an
annotator. The locations of landmarks provided by different
annotators tend to agree at salient locations on the image.

we are able to get useful signal by only providing examples
of generic landmarks and no detailed, category specific in-
structions.

Compared to this both BOX and KPT requires a de-
scription of the part or keypoint names, and/or examples of
annotations. Often there are many ambiguities, such as left
vs right, multiple parts. Our experience on collecting key-
point annotations (Maji 2011) suggests that careful instruc-
tions are necessary to avoid common annotation mistakes.
The setup time greatly increases for structurally diverse cat-
egories since there are many instances where the task is ill-
defined.

Annotation time

For the church category, users spend 48 seconds and marked
3 landmarks on average. For chairs, users spend 34 seconds
and marked 2 landmarks on average. Note that using the
pairwise annotations we get annotations for two images at
the same time. As a comparison collecting keypoint annota-
tions using the interface of (Maji 2011) takes 44 seconds and
users mark 6 keypoints on average for the chair category of
the PASCAL VOC 2011 dataset. Categories such as “sofa”
and “aeroplane” take about 60 seconds on average. Thus our
interface fares favorably in terms of the time spend by the
annotators.

Annotation difficulty

When parts or landmarks are intuitive, the annotations task
can be easy. One indicator of annotation difficulty is the
consistency of annotations. For animal categories, the an-
notations for fiducial keypoints such as “eyes” and “nose”
tend to be more consistent compared to the keypoints for
categories such as chairs and sofas. Sometimes there are lin-



Figure 4: Some relatively good annotations collected using our interface for church (left) and chair (right) categories. Parts of
one image can be matched to one another, for e.g. windows, doors and arches for churches. Given a source window in one of
the images in a pair, these correspondences allow us to automatically find the target window in the other shown as red boxes.

guistic barriers. As an example one may not be aware of the
names of parts of a horse, and there seems to a consistent
confusion between the elbow and knee, even with detailed
instructions.1

When parts don’t have intuitive names, it can be
difficult for annotators to remember its semantics.
For “sofas”, keypoints may have names such as
“LEFT BACK TOP CORNER” for the top right cor-
ner of the sofa’s back seat or “RIGHT FRONT HANDLE”
for the front tip of the right handle, and are often incorrectly
labelled by annotators. In these cases the pairwise anno-
tation task is much more intuitive: A landmark is defined
by the semantic correspondence across a pair of images,
in a way specific to the category at hand. By not forcing
the user to adhere to a predefined set of landmarks, we
avoid mistakes due to linguistic mis-interpretation or lack
of careful instructions.

A difficult annotation task can significantly increase the
curation time. It also increases the cost of collecting annota-
tions, by requiring multiple redundant annotations to smooth
out annotation errors.

Annotation cost

Assume for the sake of discussion that the cost of mark-
ing one bounding box in an image, marking correspon-
dences between a pair of images and marking a set of land-
marks in an image is the same.2 If the category has a well
defined set of keypoints, then for the same cost, the KP
setup can be more efficient than the BOX . Consider for
example the person category. Rather than separately mark-
ing bounding boxes for parts such as faces, legs, etc., the

1Horses have both knee and elbow on the front legs.
2The monetary cost–the amount paid to AMT workers per

annotation–was in fact the same for the majority of tasks compared
here.

keypoint annotations allows one to create a bounding box
on the fly for any combination of keypoints such as a con-
junction of head and shoulders, an idea that has been used
to learn parts called “poselets” (Bourdev and Malik 2009;
Bourdev et al. 2010).

For these categories both KP and BOX setup are more
cost effective than pairwise correspondence since each im-
age needs to be looked only once. The pairwise correspon-
dence setup typically would require annotating a number of
pairs which is a constant factor times the number of im-
ages n. In the worst case this number could be as high as
quadratic in n, but fortunately our experiments suggest that
a small constant (yielding a sparse sample of edges in the
image graph) may be enough for various computer vision
applications.

In our experiments we sample the edges uniformly at ran-
dom with replacement, but we note that better strategies for
sampling edges may be possible depending on the applica-
tion or prior knowledge of the distribution of images. For
many large graphs, uniform random sampling has shown
good empirical performance in preserving many graph prop-
erties (Leskovec and Faloutsos 2006).

Annotation utility

Pairwise annotations make the fewest assumptions on the
object category, but lack the semantics of keypoints or
bounding boxes, and are restricted to pairs. However the
pairwise information can be propagated using the underly-
ing semantic graph G = (V,E) over the set of images. The
vertex set V corresponds to images, while the edges E cor-
respond to the collected pairwise annotations. The semantic
graph can be used to derive a number of visual information
which we discuss next.

Semantic saliency. Since the users are free to choose what
landmarks to pick on each image, the location of the marked



Figure 6: Semantic saliency. Landmarks that are repeat-
able across other images are likely to have higher saliency
(brighter intensity).

keypoints might capture a notion of semantic saliency. As
we saw in Figure 5, the locations of marked landmarks on
an image are highly correlated across annotators. Figure 6
shows the saliency maps for several images obtained by
adding up 2D Gaussians centered at each clicked landmark
in the image.

Shared parts. Given a set of corresponding landmark
pairs in a pair of images, one could fit a geometric transform
(in our experiments, just translation and scaling) that explain
the relationship between their locations in the image. Thus,
a set of landmarks that are transformed consistently might
indicate a shared part. For churches, these include spires
(pyramidal structure on the top of the building), windows,
doors, as well as hard to name parts such as the conjunction
of the roof line and the spire. Figure 4 shows several pairs of
churches and chairs with the annotations and pairs of win-
dows (shown in red) found by least square estimates of the
translation and scaling.

The correspondences can be propagated by traversing the
semantic graph in a breadth first manner. Thus even with
sparse pairwise annotations, we can find correspondence be-
tween pairs of images as long as there is a path connecting
them. Multiple occurrences of a part may be found in an im-
age, e.g., two spires, multiple doors and windows, etc., since
there could be more than one path leading to it.

Propagating pairwise correspondence accumulates noise
at each step. As one can see in Figure 7(left), the similar win-
dows found using by traversing the semantic graph are quite
noisy and a appearance model learned using these examples
directly may not work well. However they can be used as a
rough initialization and combined with an appearance model
to find better matches. Figure 7 illustrates the process us-
ing similarity based on learning a gradient histograms (Dalal
and Triggs 2005) model from the source window. The model
is initialized by the appearance of the source window, then
updated using the top scoring matches (Figure 7(center)); fi-
nal location of each match is refined by searching locally for
optimal translation and scale under the current HOG model
(Figure 7(right)).

Conclusion and discussion

To leverage crowd-sourcing tools such as Amazon Mechan-
ical Turk (http://www.mturk.com), an important re-
quirement is that the tasks should be intuitive for the work-
ers. For the approach to be scalable across, say to a large
number of categories, the task should also be easy to set up.

Our interface for collecting pairwise correspondences tries
to achieve these twin goals and can be an attractive alterna-
tive to marking a predefined set of landmarks for categories
with large structural diversity. There are also disadvantages
of our approach. The global semantics of the landmarks is
lost, and has to be inferred from pairwise correspondences.

Our initial experiments suggest that even with sparse an-
notations and relying on a combination of visual similarity
and the underlying semantic annotation graph, one could re-
cover global semantics to learn parts for diverse visual cat-
egories. The computer vision aspects such a detection, de-
scription, etc, from novel images will be explored in future
research.
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Figure 7: (Left) Top matches found using BFS in the annotation graph. (Center) Top matches sorted by similarity to the source
window using a HOG model learned from the source window and negative images. (Right) Visualization of the coefficients of
the learned HOG model: top part shows positive, bottom part negative weights. Note that the process is able to find the visually
similar windows as well as refine the location (shown in blue), given the initial noisy location (shown in red).


