
MistNet: Measuring historical bird migration in the

US using archived weather radar data and

convolutional neural networks

Tsung-Yu Lin1, Kevin Winner1, Garrett Bernstein1, Abhay Mittal1,
Adriaan M. Dokter2, Kyle G. Horton2, Cecilia Nilsson2, Benjamin M. Van
Doren3, Andrew Farnsworth2, Frank A. La Sorte2, Subhransu Maji1, and

Daniel Sheldon a,1,4

1
College of Information and Computer Sciences, University of Massachusetts Amherst, 140 Governors

Drive, Amherst, MA 01003, USA
2Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA

3Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS, United
Kingdom

4Department of Computer Science, Mount Holyoke College, 50 College Street, South Hadley, MA
01075, USA

Running title: MistNet: Measuring historical bird migration

Article Type: Research article

Words in the abstract: 291

Words in the main text: 6741

Number of references: 77

Number of figures: 4 + 4 supplemental

Number of tables: 6 + 3 supplemental

Number of text boxes: 0

Supplementary material: 3 appendices

Author contributions: DS, SM, FLS, and AF conceived the study. TYL, KW, GB,
AM, SM, and DS designed methodology. KGH, AD, and CN collected data. TYL, KW,
GB, AD, KGH, CN, and BVD analyzed data. DS, SM, TYL, CN, and KGH wrote the
manuscript. All authors contributed critically to the drafts and gave final approval for
publication.

Data accessibility statement: The MistNet model, source code, and evaluation data
will be added to the publicly available WSRLIB software package on github (https:
//github.com/darkecology/wsrlib) prior to final publication.

aCorresponding Author: Tel: +1 413-545-4843; Email: sheldon@cs.umass.edu

1

https://github.com/darkecology/wsrlib
https://github.com/darkecology/wsrlib


Abstract

1. Large networks of weather radars are comprehensive instruments for studying bird

migration. For example, the US WSR-88D network covers the entire continental

US and has archived data since the 1990s. The data can quantify both broad

and fine-scale bird movements to address a range of migration ecology questions.

However, the problem of automatically discriminating precipitation from biology

has significantly limited the ability to conduct biological analyses with historical

radar data.

2. We develop MistNet, a deep convolutional neural network to discriminate pre-

cipitation from biology in radar scans. Unlike prior machine learning approaches,

MistNet makes fine-scaled predictions and can collect biological information from

radar scans that also contain precipitation. MistNet is based on neural networks

for images, and includes several architecture components tailored to the unique

characteristics of radar data. To avoid a massive human labeling effort, we train

MistNet using abundant noisy labels obtained from dual polarization radar data.

3. In historical and contemporary WSR-88D data, MistNet identifies at least 95.9%

of all biomass with a false discovery rate of 1.3%. Dual polarization training data

and our radar-specific architecture components are effective. By retaining biomass

that co-occurs with precipitation in a single radar scan, MistNet retains 15% more

biomass than traditional whole-scan approaches to screening. MistNet is fully

automated and can be applied to data sets of millions of radar scans to produce

fine-grained predictions that enable a range of applications, from continent-scale

mapping to local analysis of airspace usage.

4. Radar ornithology is advancing rapidly and leading to significant discoveries about

continent-scale patterns of bird movements. General-purpose and empirically val-

idated methods to quantify biological signals in radar data are essential to the

future development of this field. MistNet can enable large-scale, long-term, and
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reproducible measurements of whole migration systems.

Keywords: weather radar, aeroecology, ornithology, machine learning, deep learning,

convolutional neural networks
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1 Introduction

Researchers discovered more than 70 years ago that radars, originally designed for military

purposes, can also detect bird movements (Brooks, 1945; Lack & Varley, 1945). As radar

technology developed, ornithologists used radars to document and measure previously

difficult-to-observe aspects of bird movements, such as flight patterns and behaviors at

high altitudes, at night, and over the sea (Harper, 1958; Casement, 1966; Eastwood,

1967). With the advent of large networks of weather radars, the possibility arose to

use radar as a distributed instrument to quantify whole migration systems (Gauthreaux,

1970; Bruderer, 1997; Gauthreaux & Belser, 1998; Gauthreaux et al., 2003; Dokter et al.,

2011; Bauer et al., 2017; Nilsson et al., 2018b).

The US WSR-88D1 weather radar network (Crum & Alberty, 1993) stands out as

one of the most comprehensive instruments for studying migration due its size, uniformity,

and historical data archive. Installation began in the 1990s and the network currently

includes 159 radars with nearly complete coverage of the continental US. Each radar scans

its surroundings every 6 to 10 minutes. The radars and data collection are standardized,

and essentially all of the data—over 200 million individual files—has been archived over

more than 25 years (Ansari et al., 2018). It is well known that these radars regularly

detect birds and can be used to quantify their movements (Gauthreaux & Belser, 1998).

The result is an unparalleled historical record of bird migration.

Weather radar data can answer a wide range of important migration ecology ques-

tions. Previous studies have used weather radar data to understand patterns and determi-

nants of nocturnal migration (Gauthreaux et al., 2003; Kemp et al., 2013; La Sorte et al.,

2015a; Farnsworth et al., 2016), identify critical stopover habitat (Buler & Diehl, 2009;

Buler & Dawson, 2014), locate on-the-ground roosting sites of birds (Winkler, 2006; Buler

et al., 2012; Laughlin et al., 2013, 2016; Bridge et al., 2016), understand flyways (Hor-

ton et al., 2018; Nilsson et al., 2018b) and flight behavior (Dokter et al., 2013; Horton

et al., 2016; La Sorte et al., 2015b), quantify demography (Dokter et al., 2018b), doc-

1 Weather Surveillance Radar, 1988, Doppler

4



ument the effects of artificial light (Van Doren et al., 2017; McLaren et al., 2018) and

disturbance (Shamoun-Baranes et al., 2011) on migration, explore the projected impli-

cations of climate change (La Sorte et al., 2019), and forecast migration at continent

scales (Van Doren & Horton, 2018). Researchers worldwide recognize the potential of

radar data to provide new and urgently needed information about the migration ecology

of birds, bats, and insects, including detailed information about: routes, phenology, and

mechanisms of migration; ecosystem services; the impacts of human activities and climate

change on migration systems; conservation prioritization; aviation safety; and agricultural

pests (Kelly & Horton, 2016; Bauer et al., 2017, 2018).

Significant methodological challenges have slowed the full and widespread use of

weather radar data as a biological instrument. Early WSR-88D studies demonstrated

how to detect and quantify bird movements but required substantial manual effort, pri-

marily to screen radar images for precipitation and other unwanted targets prior to anal-

ysis (Gauthreaux & Belser, 1998; Gauthreaux et al., 2003). Human interpretation of

images has persisted into most modern analyses (Buler & Diehl, 2009; Buler et al., 2012;

Buler & Dawson, 2014; Farnsworth et al., 2016; Van Doren et al., 2017; Horton et al.,

2018; McLaren et al., 2018) and is a substantial barrier to very large-scale research with

WSR-88D data, for example, the complete analysis of 200 million historical data files.

Recent advances have led to the first fully automated methods to extract biolog-

ical information from weather radar data. In 2012–2013, the WSR-88D network was

upgraded to dual polarization technology, which makes it significantly easier to separate

biology from precipitation in modern data (Stepanian et al., 2016), but leaves open the

problem of extracting biological information from historical data. Dokter et al. (2011) de-

veloped an algorithm to separate precipitation from biology in European C-band radars;

this was later extended to US dual polarization and S-band data (Dokter et al., 2018b,a),

but currently cannot fully separate precipitation from biology in historical US data. Roy-

Chowdhury et al. (2016), Van Doren & Horton (2018) and Horton et al. (2019) trained

machine learning models to automatically identify radar scans that are contaminated
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with precipitation. These methods are useful in that they allow automated analysis prior

to the dual polarization upgrade in 2012–2013, but discard all biology in scans where

precipitation occurs; our results will show this to be about 19% of the total biomass.

Whole-scan classifiers are also inflexible: they are tailored to a specific spatial extent

(e.g., rain within 37.5 km of the radar), and would require substantial additional labeling

effort and model training to adapt to a slightly different analysis (e.g., rain within 150 km

of the radar).

In this paper we develop MistNet, a deep convolutional neural network (CNN) to

separate precipitation from biology at a fine spatial resolution in historical WSR-88D data.

MistNet has a false discovery rate of at most 1.3% and retains 15% more of the total

biomass than whole-scan classification. Radar images contain clear visual patterns that

allow humans to discriminate precipitation from biology. Deep learning has revolutionized

the ability of computers to mimic humans in solving similar recognition tasks for images,

video and audio (Krizhevsky et al., 2012; Graves et al., 2013; Simonyan & Zisserman,

2014). MistNet is based on models for images, but includes several innovations that

are specifically tailored to weather radar data. To avoid the cost of collecting a massive

human-labeled data set, we use “weak” labels from dual polarization data. We develop

a novel “adapter” architecture to handle the large number of input channels in radar

data compared to RGB images, and the need to predict at different elevations. We

conduct a large-scale empirical validation of MistNet and competing approaches on two

evaluation data sets. MistNet makes fine-grained predictions and can be used within

radar ornithology workflows to address a range of biological questions at different scales.

We present several case studies to illustrate the flexibility of the approach.

2 Materials and Methods

Our goal was to develop a system to discriminate biology from weather in radar data (Fig-

ure 1). Convolutional neural networks (CNNs) have achieved outstanding performance

on recognition tasks in related domains such as image classification (Krizhevsky et al.,
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Figure 1: (a) Radar geometry. A sweep, shown here at an elevation of 0.5 degrees,
traces out an approximately conical surface and is usually rendered as top-down image
or “plan-position indicator” (i.e., PPI). (b) Overview of processing pipeline. Radar
measurements are collected on a three-dimensional polar grid (3 products x 5 elevations)
and rendered as a 15-channel “image” in Cartesian coordinates. An adapter network maps
15 channels to 3 channels to match a conventional RGB image. The CNN processes the
image and outputs five segmentation masks, one for each elevation. Each segmentation
mask delimits areas containing biology and weather (red: rain, orange: biology, blue:
background). The inputs, intermediate activations, and outputs of the CNN are three-
dimensional arrays arranged in layers and depicted as boxes (pink: input, light blue:
intermediate, green: output; see also Section 2.1). Activations at each layer are a function
of those at the preceding layer. The activations in output branches (green boxes) are
functions of several earlier layers, shown for one branch with black curved arrows.

2012), face recognition (Taigman et al., 2014), speech recognition (Graves et al., 2013;

Hinton et al., 2012), and video understanding (Simonyan & Zisserman, 2014; Tran et al.,

2015)), and are therefore an excellent candidate for this task. However, we faced several

radar-specific challenges.

First, most existing CNNs are designed for three-channel color images (RGB) with

pixels arranged in a Cartesian grid. Unlike images, weather radar data is collected on a

three-dimensional polar grid with many channels, so there were a number of unresolved

questions about how to represent radar data and design CNNs for this task.

A second challenge was the availability of training data. CNNs require a large

number of labeled examples to train due to the vast number of parameters. For image

classification, data sets of more than a million labeled images are routine (Krizhevsky
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et al., 2012). We wish to make pixel-level predictions to segment areas of precipitation

and biology. Curating enough high-quality pixel-level annotations to train a segmenta-

tion network would be costly and impractical. We therefore investigated two alternatives.

First, we collected noisy training labels automatically using dual polarization radar prod-

ucts. Second, we adopted a common transfer learning technique: instead of training a

CNN “from scratch” with randomly initialized parameters, we started with CNNs trained

for image recognition tasks and then updated the parameters using training labels for the

radar task. This allows a model to learn faster with fewer labels (Razavian et al., 2014).

Note that the issues of architecture and training are intertwined. To take advantage

of high-quality pre-trained CNNs from image recognition tasks, our architecture must

render radar data as three-channel images.

2.1 Radar Data and CNN Preliminaries

Radar Data The US National Weather Service operates the WSR-88D (Weather Surveil-

lance Radar-1988 Doppler; also called NEXRAD) network of radars (Crum & Alberty,

1993; Doviak & Zrnić, 1993). The network currently includes 143 radars in the contiguous

US and an additional 16 radars in Alaska, Hawaii, and other US territories and military

installations.

Scanning strategy and geometry. Radars in the WSR-88D network conduct volume

scans to sample the surrounding airspace. Each volume scan (hereafter: scan) takes from

four to ten minutes. During one scan, the radar conducts a sequence of 360-degree sweeps

where it rotates its antenna around a vertical axis with fixed elevation angle to sample a

cone-shaped slice of the airspace (Figure 1a top); conventional radar images are top-down

views of these sweeps (Figure 1a bottom). A typical scanning strategy during clear-air

conditions includes five sweeps at elevation angles from 0.5 to 4.5 degrees. From each

sweep come a set of gridded data products summarizing the radar signal returns within

discrete sample volumes, which are the portions of the atmosphere sensed at a particular

antenna position and range from the radar (Doviak & Zrnić, 1993).

Data products and dual polarization. WSR-88D radars collect six data products.
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Of these, three “legacy” products have been collected since the installation of the system

in the early 1990s, and three dual polarization or “dual-pol” products became available

when the system was upgraded during the period from 2011 to 2013 (Stepanian, 2015;

Stepanian et al., 2016). The legacy data products are reflectivity factor (Z), radial veloc-

ity (vr), and spectrum width (σw). Reflectivity factor is related to the density of objects

in the atmosphere and their radar cross sections (which are related to their sizes); radial

velocity and spectrum width are the reflectivity-weighted mean and standard deviation,

respectively, of the radial velocity, computed from the Doppler spectrum of the returned

radio waves, and provide information about the velocity of scatterers. Dual-pol radars

emit and detect radio waves both in vertical and horizontal polarizations (Stepanian et al.,

2016). The relationship between backscatter in the two polarizations provides informa-

tion about the object shape (height-to-width ratio) and uniformity within a pulse volume,

which help discriminate different types of objects (rain, birds, etc.) (Zrnić & Ryzhkov,

1998; Stepanian et al., 2016; Dokter et al., 2018a). The dual polarization products are

differential reflectivity (ZDR), differential phase (ψDP), and correlation coefficient (ρHV).

Resolution and Rendering. A WSR-88D data product is stored as a collection of

sweeps. Each sweep is a two-dimensional data array corresponding to a polar grid indexed

by range r and azimuth φ. Data prior to 2008 had “legacy” resolution of 1000 m ×

1°; during 2008 the radars were upgraded to “super-resolution” of 250 m × 0.5°. To

standardize data for analysis, we aligned all products to a fixed three-dimensional grid

using nearest neighbor interpolation (Parker et al., 1983). We used a super-resolution grid

(250 m × 0.5°) with third dimension corresponding to the five elevation angles 0.5°, 1.5°,

2.5°, 3.5° and 4.5°. Higher sweeps, which are only available in certain operating modes,

were discarded. We then resampled each sweep onto a Cartesian grid with resolution of

500 m and radius of 150 km using nearest neighbor interpolation, resulting in a 600 × 600

grid centered at the radar station, where the x- and y- dimensions correspond to distance

along the earth’s surface in the east-west and north-south directions. The result is a set

of aligned 600 × 600 arrays (Figure 1), one for each product and elevation. We used the
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same units as the original data files: in particular, reflectivity factor used a decibel scale

(dBZ). “NODATA” values were replaced by numeric defaults.

CNNs A deep neural network transforms an input array (e.g., an image) into one or

more output values through a sequence of linear and nonlinear transformations. The

computation is arranged into L layers, where z(0) is the input array, and, for each layer `,

the network computes an array of values z(`)—termed the “activations” at layer `—as a

function of the activations of previous layers. The output array is z(L). In networks that

we will consider, each z(`) is a three-dimensional array of dimension c` × m` × n` con-

ceptualized as an image with c` channels and size or “spatial dimension” m` × n`. These

are illustrated as colored boxes in Figure 1 (pink for the input image, and light blue for

intermediate activations). The typical operations used to compute the activations at a

single layer in a CNN from its predecessors involve convolutions, downsampling, elemen-

twise nonlinear transformation, pooling, and fully connected layers. A convolution is a

linear operation that slides a filter across each position of the input image and produces

one output value for each image location. This is done simultaneously with many filters

to produce multi-channel output. With appropriate filters, convolutions can implement

a wide range of basic image operations including smoothing, Fourier analysis and other

changes of basis, edge extraction, texture extraction, and template matching (Forsyth &

Ponce, 2003). It can be combined with downsampling to produce an output image of

smaller size. A linear operation such as convolution is typically followed by an elemen-

twise nonlinear transformation or “nonlinearity” such as the ReLU nonlinearity, which

transforms each value as z′ = max(0, z). Pooling reduces the spatial dimension by aggre-

gating over small blocks of the image. A fully connected layer is one where each value

is a linear function of all values in the previous layer followed by a nonlinearity. Each

convolutional layer and fully connected layer has weights controlling the linear transfor-

mations; these are the parameters to be learned. See the book of Goodfellow et al. (2016)

for more background on CNNs.

In MistNet, the input x = z(0) has dimension 15 × 600 × 600 and the output z(L)
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has dimension 3 × 5 × 600 × 600, which corresponds to the class probability for each of

3 classes (precipitation, biology, background) at each position in five 600 × 600 images,

one for each elevation angle. At prediction time, the class with the highest probability

is predicted. Let f(x;θ) be the function describing the entire mapping from the CNN’s

input to its output, so that z(L) = f(x;θ), where θ contains the parameters of all layers.

During learning, the loss function L(f(x;θ),y) is computed to calculate the disagree-

ment between the network output and the true class labels y (which have dimension

5 × 600 × 600). We train all models using the cross-entropy loss function and stochas-

tic gradient descent (SGD, Goodfellow et al., 2016), which adjusts θ in the direction

−
∑

i∈B
∂
∂θL(f(xi;θ),yi). Here, i indexes training examples and B is set of indices cor-

responding to the batch of examples used for one update. Gradients are computed by

backpropagation (Rumelhart et al., 1986).

2.2 Training and Evaluation

Weak Training Labels Because we do not have a large data set of radar images with

pixel-level labels, we conducted transfer learning from image classification models trained

on the ImageNet dataset (Deng et al., 2009). We initialized MistNet’s model parameters

using those models, and then adapted the parameters by training with weak annotations

obtained from dual-pol data.

There are several simple rules to discriminate precipitation from biology with rea-

sonable accuracy using dual-pol products. Biological scatterers tend to have a much lower

correlation coefficient than hydrometeors because their orientation, position, and shape

are much more variable in time (Stepanian et al., 2016; Kilambi et al., 2018). It has be-

come common practice among radar biology practitioners to use a threshold of ρHV ≤ 0.95

to identify biological scatterers (Dokter et al., 2018a). Although weather events such as

mixed precipitation can also produce ρHV values this low (Lim et al., 2005), this rule is

believed to have reasonable accuracy in general, and has been validated through compar-

isons with a colocated bird radar (Dokter et al., 2011; Nilsson et al., 2018a). Little is

known about the best threshold value or pixel-level accuracy of this method.
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Recently, Kilambi et al. (2018) proposed a refined thresholding rule using the depo-

larization ratio (in decibel units)

DR = 10 log10

(
ZDR + 1 − 2Z

1/2
DRρHV

ZDR + 1 + 2Z
1/2
DRρHV

)
, (1)

which is a proxy for the circular depolarization ratio (Ryzhkov et al., 2017), a quantity

that is useful for discriminating meteorological targets but is not measured directly by

WSR-88D radars. Kilambi et al. (2018) showed that meteorological targets have smaller

DR values and suggested a classification threshold of DR= −12 dB based on a quantitative

evaluation of 32 volume scans.

We evaluated the performance of a range of threshold rules for both ρHV and DR on

a large set of manually labeled evaluation scans (described below). Both ρHV-thresholding

and DR-thresholding performed well, with DR-thresholding being slightly more accurate

(Section 3). MistNet was developed prior to the publication of Kilambi et al. (2018)

and uses ρHV-thresholding for training; replacing this with DR-thresholding is a possible

avenue for future improvement.

Finally, we used the following rules to generate training labels for MistNet. For

each pixel, if the reflectivity factor Z is reported as “no data” (below signal-to-noise

threshold) then we set the label to “background”. Otherwise, if ρHV > 0.95 we set the

label to “precipitation”. All remaining labels are “biology”.2 We included the background

class during training to avoid semantic confusion resulting from forcing the model to

predict background pixels as either weather or biology. At prediction time, it is known

whether or not a pixel belongs to the background class, and predictions are only made

on non-background pixels.

2 Note that the biology class includes all non-hydrometeor scatterers, including insects, dust, debris,
etc.; our goal is to eliminate precipitation, not to make fine-grained distinctions among non-hydrometeor
scatterers. This class will also include pixels containing hydrometeor scatterers that happen to have low

ρHV values, such as mixed precipitation.
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Training Set We downloaded radar scans for training from Amazon Web Services (Ansari

et al., 2018)3. The scans were selected from all 161 radar stations4 in spring (April and

May) and fall (September and October) from 2014 through 2016. For each station, we

sampled scans at 30-minute intervals within a 3-hour period starting at local sunset,

resulting in a training set of 239 128 scans.

Evaluation data We collected two separate evaluation data sets of human-labeled

ground truth data: a geographically representative contemporary set, and a historically

representative historical set. Data was labeled using a slight modification of a web-based

tool designed for interactive image segmentation (Tangseng et al., 2017).5 We used the

tool to delineate areas of precipitation out to a ground range of 150 km in selected sweeps.

The contemporary set includes data from 16 geographically representative stations

for two one-month periods during spring (15 April to 15 May) and fall (15 September

to 15 October) of 2017. Thirteen stations were selected using a stratified random design

and three additional stations were selected manually; details and a list of stations are

given in Appendix A. On each day and for each station, the scan closest to three hours

after local sunset was selected to approximate the time of peak nocturnal migration (e.g.,

Farnsworth et al., 2016; Horton et al., 2015). This resulted in a total of 971 scans. For

each scan, we labeled the lowest elevation sweep and one randomly selected higher sweep

from the lowest five elevation angles. We later discarded some labeled sweeps due to

changes in our rendering process. In each volume scan, only the sweeps closest to one of

the desired elevations (0.5°, 1.5°, 2.5°, 3.5° and 4.5°) were retained; some labeled sweeps

between these elevation angles were discarded. The final number of labeled sweeps at

each elevation was 971 (0.5°), 254 (1.5°), 235 (2.5°), 167 (3.5°), and 173 (4.5°).

The historical set includes data from stations KMOB (Mobile, AL) and KBGM

(Binghamton, NY) from 1995 to 2017. These scans are drawn from an existing data set

of manually screened scans (Van Doren & Horton, 2018). Scans were selected from a

3 https://s3.amazonaws.com/noaa-nexrad-level2/index.html
4 This is the total number of stations reporting data during that time, including those outside the

contiguous US. 5 https://github.com/kyamagu/js-segment-annotator
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2.5-hour period centered on three hours after local sunset on March 15th, April 15th,

May 15th, September 1st, October 1st, and November 1st for each station, resulting in

4891 scans (spring, 2549; fall, 2342), and then manually classified as either “clear” or

“weather” based on the presence or absence of precipitation within 37.5 km of the radar

station. We used all clear scans for computing pixel-level performance, by assuming all

non-background pixels with 37.5 km of the radar belonged to the “biology” class. For

weather scans, we randomly selected 50 scans per station for spring and fall to manually

segment using our web-based tool so we could compute pixel-level performance metrics

(200 scans × 5 elevations = 1000 fully segmented images).

All evaluations were performed for the region within 37.5 km ground range from

the radar. To measure pixel-level performance we first computed a confusion matrix

in which each pixel was weighted by reflectivity factor on a linear scale (mm6 mm−3)

after first capping values at 35 dBZ to limit the effect of extremely high values that are

typically discarded in biological analyses. For the historical data set, clear and weather

scans were subsampled from the original sample at different rates (see above); when

computing the confusion matrix, we weighted the contribution of each type of scan to be

proportional to its representation in the original sample (29.7 % weather for KBGM and

37.2 % weather for KMOB). Entries in the confusion matrix correspond to the fraction

of total reflectivity—which represents the total biomass—classified a certain way. From

this matrix we computed the standard metrics of precision (fraction of predicted biology

that is actually biology), recall (fraction of true biology that is predicted to be biology),

and F-score (harmonic mean of precision and recall). Precision is equal to one minus the

false discovery rate. Recall is the same as sensitivity.

2.3 CNN Experiments

We performed several iterations of preliminary experiments, which suggested that the fol-

lowing elements would be important to MistNet: (1) using deep convolutional networks,

(2) leveraging models pre-trained on ImageNet, (3) using data from all 15 modalities (5 el-

evations × 3 legacy products) to make predictions at each elevation, and (4) large training
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data sets assembled using dual-pol labels.

This led to the following design for MistNet. It is based on the FCN8 (fully

convolutional network with predictions at a spatial granularity of 8 pixels) architecture

from (Long et al., 2015) with an ImageNet pre-trained VGG-16 “backbone” (Simonyan

& Zisserman, 2015). See also Figure 1. We added a linear adapter network to map the

input data from 15 to 3 channels at each spatial location for compatibility with the input

dimensions of the VGG-16 network, and trained the parameters of the linear adapter. Un-

like the standard FCN8 network, which predicts one value per spatial location, MistNet

makes five predictions, one per elevation. This is accomplished by creating five separate

branches that take as input the activations of several preceding convolutional layers and

output class probabilities (the curved arrows in Figure 1 represent one of these branches).

MistNet was trained in MATLAB using MatConvNet (Vedaldi & Lenc, 2015).

All parameters except those for the adapter and prediction branches were initialized from

a VGG-16 architecture (Simonyan & Zisserman, 2015) pre-trained on ImageNet. The

parameters of the adapter and prediction branches were initialized randomly and the

entire model was trained end-to-end with stochastic gradient descent using the full data

set of 239 128 scans. We augmented the training data by including a second version of

each scan that was downsampled to legacy resolution prior to rendering in Cartesian

coordinates, as a means to improve the ability of MistNet to generalize to older data,

since all training data comes from 2014 and later. Additional details of the MistNet

architecture and training procedure are provided in Appendix B.

We conducted a range of experiments to examine the benefits of different MistNet

design choices:

• Deep vs. shallow architectures. We compared MistNet, a deep model, to two “shal-

low” baselines, which are both two-layer convolutional networks. The first has filter

size 1 × 1, which means that predictions for each spatial location depend only on the

radar measurements at that location. The second has filter size 5 × 5, which makes

predictions at each location using all data from a 5 × 5 window centered at the loca-
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tion.

• Predicting at 5 elevations using 15 channels. We compared MistNet to two baseline

approaches that use a standard FCN8 architecture for RGB images to make predictions

at five elevations. Both baselines make predictions separately at each elevation using

three selected input channels. The first baseline uses the Z, vr, and σw products for the

target elevation as the three input channels. This method lacks access to information

from other elevations, which can be highly discriminative, since rain typically spans

multiple sweeps while biology is concentrated at the lowest sweeps. The second baseline

uses reflectivity from the target elevation and the two closest elevations as its three

input channels; it gains access to information from adjacent sweeps but loses access to

information from the vr and σw products.

• Size of training set. We compared models trained on data sets of consisting of 100,

1000, 10 000 and 100 000 scans.

• Post-processing predictions. The standard prediction rule is to classify a pixel as pre-

cipitation if the predicted class probability for precipitation exceeds 0.5. In preliminary

experiments we observed that MistNet underpredicted precipitation at the boundaries

of rain storms and sometimes missed rain mixed with biology at low elevations. We

developed the following postprocessing rules to improve these cases: we predict a pixel

as rain if the class probability for rain exceeds 0.45 or if the average class probability for

rain across the five elevations at that spatial location exceeds 0.45. We further compute

a “fringe” of 8 pixels surrounding any rain pixel and classify the fringe as rain, with

the goal of conservatively removing as much rain as possible due to its possible adverse

impacts of biological analysis.

• Pre-training. We compared models trained with parameters initialized from ImageNet

models to ones trained from randomly initialized parameters.

• Low-resolution rendering. We trained models with and without augmentation by low-

resolution rendering.
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2.4 Comparison with Whole-Scan Classification

MistNet segments radar scans, which allows for pixel-level screening of weather. Most

previous biological analyses of historical weather radar data use scan-level screening. A

scan is accepted and used in the analysis if it is free from precipitation and clutter, oth-

erwise it is rejected. The screening step is conducted either by a human (Buler & Diehl,

2009; Buler et al., 2012; Buler & Dawson, 2014; Farnsworth et al., 2016; Van Doren et al.,

2017; Horton et al., 2018; McLaren et al., 2018) or using a machine learning classifier (Roy-

Chowdhury et al., 2016; Van Doren & Horton, 2018; Horton et al., 2019). However, even

a perfect whole-scan classifier will miss biology that co-occurs with precipitation. We

compared MistNet to whole-scan classification by computing the implied pixel-level

performance of whole-scan classification: all pixels in a weather scan were considered as

precipitation and removed from analysis, and all pixels in a clear scan were retained. In-

stead of comparing to an automated classifier, we compared the performance of MistNet

to an “oracle” whole-scan classifier that uses the human whole-scan labels (weather or

clear). This is considered an upper bound on the performance of an automated whole-scan

classifier.

We also compared MistNet to (oracle) whole-scan classification on an end-to-end

performance measure. We computed vertical profiles of reflectivity (VPRs) using three

different methods to exclude precipitation: (1) MistNet, (2) the implied pixel-level

segmentation of the oracle whole-scan classifier, and (3) the ground-truth segmentation.

Each VPR consists of average reflectivity measurements (in units of η, cm2 km−3, cf.

Chilson et al., 2012) of sample volumes in each 100 m height bin up to 3000 m and within

37.5 km of the radar; we used WSRLIB (Sheldon, 2017) and followed (Farnsworth et al.,

2016; Horton et al., 2018; Van Doren & Horton, 2018) to compute VPRs. For each

segmentation method, pixels labeled as precipitation were set to zero reflectivity. We then

measured the error of the VPRs with automatic segmentation (MistNet and whole-scan

classification) compared to the VPR with ground-truth segmentation. Performance was

measured as root mean-squared error (RMSE, cm2 km−3) over the height bins.
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2.5 Biology Case Studies

There are a wide range of science and conservation uses for continent-wide historical

measurements of bird migration. We used MistNet to prepare a 19.5-year data set of

spring and fall migration intensity. From each of the 143 radar stations in the contiguous

US, we processed nighttime scans at 30-minute increments starting at local sunset for

spring (1 March–15 June) and fall (1 August–15 November) from 1999 through the middle

of 2018—a total of approximately 10 million scans. We used MistNet to segment each

scan and then computed vertical profiles of reflectivity for further analysis. We conducted

several case studies to demonstrate biological uses of this data, including spatial mapping

of migration traffic as well as visualization of seasonal phenology across many years, the

within-season temporal patterns of migration, and within-night patterns of airspace usage

by migrants.

3 Results

Method Precision Recall F-score

ρHV > 0.95 90.1 93.4 91.7

DR < −15 89.0 96.6 93.1

MistNet 99.1 96.7 97.9

Table 1: Performance of dual-pol thresholding on contemporary evaluation set. Mist-
Net performance is shown for comparison. The threshold values of 0.95 for ρHV and −15
for DR led to the best performance among a range of alternatives.

Dual-pol thresholding and training labels Table 1 shows the classification perfor-

mance of dual-pol based rules. Thresholding based on ρHV and DR both achieve F-score

greater than 90% on the contemporary evaluation set. The best thresholds were 0.95 for

ρHV and −15 dB for DR (Figure C.3). DR-based thresholding achieves higher F-score

and is an attractive alternative to ρHV-based thresholding. For comparison, MistNet

achieves F-score of 97.87% on the same evaluation set using only legacy data products for

prediction. This shows that simple dual-pol based thresholding provides effective training

signal: the trained model only has access to legacy data and exceeds the performance of
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the dual-pol based training labels. However, note that more accurate predictions could

be obtained using dual-pol data if this were the final goal, for example, using despeck-

ling (Kilambi et al., 2018) or spatial postprocessing (Dokter et al., 2018a). Our goal is

only to obtain a cheap and “good enough” training signal.

Predicted

Biology Precipitation

Biology 17.9 0.8

Precipitation 0.2 81.2

Precision Recall F-score

98.7 95.9 97.3

(a) Historical evaluation set

Predicted

Biology Precipitation

Biology 50.6 1.8

Precipitation 0.3 47.3

Precision Recall F-score

99.1 96.7 97.9

(b) Contemporary evaluation set

Table 2: Confusion matrices and overall performance measurements for MistNet on
historical and contemporary evaluation sets.

Overall performance Figure 2 and C.4 shows several examples of predictions made by

MistNet compared to the ground-truth human annotations. Table 2 gives the confusion

matrices and overall performance measurements of MistNet on the historical and con-

temporary evaluation sets. The overall prevalance of precipitation is higher in historical

data (81.4 % vs. 47.6 %).

CNN experiments The results of experiments to assess MistNet design choices are

shown in Tables 3, 4, 5, C.2, C.3 and Figure 3. Unless stated otherwise, the results in

this section use 10 000 scans, use ImageNet pre-training, do not post-process predictions,

and do not include low-resolution augmentation of the training data.

• Deep vs. shallow architectures. Table 3 shows the performance of MistNet compared

with the two shallow models. In the 2-layer networks, 5 × 5 convolutions performs

better than 1 × 1 convolutions, which shows that the spatial context is helpful for

prediction. MistNet’s F-score is 5 to 10 percentage points better than both shallow

networks, showing that the deep architecture, which considers more spatial context

and at different scales, is beneficial. The difference is more pronounced on the weather

subset of historical scans.
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150km 37.5km
Input MistNet Human Input MistNet Human

(a) KBGM 2014/10/01 02:15:53 GMT

(b) KMOB 2007/09/01 03:10:00 GMT

Figure 2: MistNet Segmentation Results. Segmentation results (red: rain, orange:
biology, blue: background) predicted by MistNet are shown along with the human
annotations in the ranges of 150km and 37.5km. Each example is shown as a stack of five
rows from top to bottom corresponding to the elevation angles from 0.5 to 4.5 degrees.
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Data set Method Precision Recall F-score

Historical (all)

2-layer (1 × 1) 91.0 78.3 84.2

2-layer (5 × 5) 88.9 94.4 91.5

MistNet 93.5 99.0 96.2

Historical (weather)

2-layer (1 × 1) 66.5 81.4 73.2

2-layer (5 × 5) 59.9 93.7 73.1

MistNet 72.6 96.1 82.7

Contemporary

2-layer (1 × 1) 96.2 66.5 78.6

2-layer (5 × 5) 96.0 88.6 92.1

MistNet 96.4 99.1 97.7

Table 3: Performance comparison of MistNet to two different 2-layer convolutional
neural networks on historical and contemporary data sets.

Data set Method Precision Recall F-score

Historical (all)

DZ+adjacent sweeps 79.8 99.3 88.5

DZ+VR+SW 79.4 99.3 88.3

MistNet 93.5 99.0 96.2

Historical (weather)

DZ+adjacent sweeps 42.2 97.6 59.0

DZ+VR+SW 41.7 97.8 58.5

MistNet 72.6 96.1 82.7

Contemporary

DZ+adjacent sweeps 93.7 99.5 96.5

DZ+VR+SW 94.2 99.4 96.7

MistNet 96.5 99.1 97.8

Table 4: Comparing different approaches to predicting at multiple elevations. Mist-
Net predicts at 5 elevations using all 15 channels as input. DZ+adjacent sweeps uses
only reflectivity information from the target elevation and adjacent sweeps as input.
DZ+VR+SW uses three products at the target elevation as input.

• Predicting at 5 elevations using 15 channels. Table 4 compares MistNet to the two

baselines that predict each sweep separately using three selected input channels. Mist-

Net achieves higher F-scores than either baseline. The baselines misclassify rain as

biology substantially more than MistNet: they have lower precision on each data set,

and the difference is more pronounced on historical data, which has a higher percent-

age of rain than the contemporary data, and especially on the weather subset, where

MistNet has F-score 82.7 % compared to 58.9 % for the better baseline model.

• Size of training set. Figure 3 shows the results of increasing training set size. Perfor-

mance increases significantly from 100 to 1000 training scans. In both historical and
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Figure 3: Performance of MistNet as a function of the size of training data. The
performance improves significantly from 100 to 1000 training examples. The recall of
biology prediction continues to increase with more training data. This suggests more
data is useful for reducing the confusion of recognizing biology as precipitation.

Data set Post-processing? Precision Recall F-score

Historical (all)
no 93.5 99.0 96.2

yes 98.7 95.9 97.3

Historical (weather)
no 72.6 96.1 82.7

yes 92.7 82.8 87.5

Contemporary
no 96.4 99.1 97.7

yes 99.1 96.7 97.9

Table 5: Performance of MistNet with and without post-processing.

contemporary data, recall continues to increase with more training data, but precision

may stay the same or even decrease after 1000 scans. Improvements in recall suggest

that bigger training sets allow the model to better recognize cases of biology that can

be confused with precipitation.

• Post-processing. Table 5 compares results with and without post-processing. Post-

processing always predicts fewer pixels to be biology—and hence will have higher pre-

cision and lower recall—than the standard prediction rule. Post-processing improves

F-score on each data set; again, the difference is most pronounced on the weather subset

of historical data (4.8 %), and is very slight on contemporary data (0.2 %).

• Pre-training. Table C.2 compares models with and without pre-training. The pre-
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trained models outperform the randomly initialized ones, but with a modest overall

increase in F-score. The difference is most pronounced on the weather subset (2.7 %),

and very slight on contemporary data (0.1 %). On all evaluation sets precision improves

and recall is nearly unchanged, which indicates that pre-training helps recognize some

cases of rain that would otherwise be misclassified as biology.

• Low-resolution augmentation. Table C.3 compares MistNet with and without training

data augmentation by low-resolution rendering. Augmentation yields slight F-score

improvements (0.9 % historical data, 0.2 % contemporary).

3.1 Comparison with Whole-Scan Classification

Pixel-level VPRs (RMSE)

Method Precision Recall F-score Clear Weather All

MistNet 98.7 95.9 97.3 40.2 262.3 155.3

Oracle scan-level 100 81.2 89.6 0.0 655.2 379.2

Table 6: Pixel-level classification performance and per-height-bin root mean-squared
error (η, cm2 km−3) for MistNet and an oracle scan-level classifier on historical data.
“Clear”, “weather”, and “all” refer to different subsets of historical evaluation set.

Table 6 compares the performance of MistNet to an oracle whole-scan classifier on

the historical evaluation set. Henceforth, MistNet is trained using the full data set of

239 128 scans, with pre-training, with low-resolution augmentation, and post-processing

is applied to predictions. The oracle whole-scan classifier eliminates all rain and therefore

has pixel-level precision of 100 %. However, its recall is only 81.2 %, meaning it excludes

about 19 % of biology. In contrast, MistNet retains an additional 14.7 % of the total

biology for a recall of 95.9 %, and still has an excellent precision of 98.7 %, leading to

a significantly better F-score. For the task of computing VPRs, MistNet has slightly

higher error on the clear data but substantially lower error on the weather data, leading

to a lower overall error.
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3.2 Biology Case Studies

Figure 4 shows the biological case studies. Panel (a) illustrates the cumulative migration

traffic across the US from 1999-2018. An examination of latitudinal cross-sections of the

US reveals passage of upwards of 3 billion birds, assuming a radar cross-section of 11 cm2

(mass: 26 g–36 g). The significance of the midwest as a migration corridor is apparent.

Panel (b) shows the cumulative spring migration traffic over one station for 20 years,

and can be used to examine year-to-year consistency and variability in timing of spring

migration. For example, the date by which 50% of total spring migration occurred over

KHGX varied by only 11 days (mean: April 28th), and there was no difference across years

(F1,18 = 0.481, p = 0.497). Panel (c) further zooms in and shows the nightly migration

over KHGX during 2018. From this we can see that migratory activity isn’t uniform

night-to-night, but occurs in bursts. For example, 51.3% of migration occurs on the top

10 nights. Panel (d) further zooms in to show the migration intensity at different heights

during the night of April 29, 2018. The ascent behavior at the onset of migration and

altitude distribution during later part of migrants is apparent.

4 Discussion

Discriminating biology from precipitation has been a long-standing challenge in radar

aeroecology that has substantially limited accessing the full biological potential of his-

torical weather radar data. MistNet provides a fully automated method for extracting

biological signals from historical WSR-88D weather radar data and opens the entirety

of the more-than-25-year archive of US weather radar data for long-term and large-scale

biological studies. The high resolution of MistNet retains 15 % more biology than

previously used whole-scan methods, providing a more complete data set that includes

previously-absent information on biological targets interacting with weather systems.

MistNet can help address contemporary and pressing ecological challenges. Our

case studies highlight the temporal and spatial dexterity of data products enabled by

MistNet, spanning from multiple decades to single nights and from continental scales to
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Figure 4: Case study. (a) Average cumulative migration traffic across the continental
United States from 1999-2018. White circles show radar locations and are scaled to the
cube root of cumulative migration traffic. Site estimates are interpolated using inverse
distance weighting. Latitude lines show estimated passage numbers across different lati-
tudinal cross-sections. (b) Site-level cumulative traffic curves shown for Houston, Texas
(KHGX) from 1999-2018. Inset shows the period when approximately 50 % of migratory
passage occurred. (c) Seasonal timing of migration showing the nightly variation in cu-
mulative migration passage. The peak night of activity is highlighted with a gray circle.
(d) Aerial migratory activity for the night of April 29th, 2018 (i.e., peak night of activity)
from sunset to sunrise. 25



individual parcels of airspace. At the largest spatial and longest temporal extents, we can

examine cumulative migration traffic across the continental US to identify flyways, critical

hot spots, and estimate long-term changes in total biomass passing broad ecoregions for

conservation and ecological applications. Beyond multi-decadal summaries, these data

can be used to quantify yearly phenology at specific points of coverage and examine how

migration timing may be changing (or not) with modified habitats and climates. At the

site level, we can examine the progression of migration within a single season to iden-

tify peak nights of movements, with the potential to relate environmental conditions and

motivate conservation action (e.g., halting wind turbines) and civic engagement (e.g.,

Sullivan et al., 2009). During single nights, we can examine which regions of the atmo-

sphere migrants are using to investigate details of their flight behaviors, such as speed

and direction in the different altitude layers.

Our results show that deep learning is an effective tool for discriminating rain from

biology in radar data, and is likely to be successful for other recognition tasks in radar

data. Key ingredients to MistNet’s success are a large enough training set, which is

enabled by gathering labels automatically from dual polarization data, and an architecture

that is able to use all available information—from all products across multiple elevations—

while making predictions. An interesting technical aspect of MistNet’s architecture is

the fact that information is compressed down from 15 to 3 channels at the first layer,

but MistNet is later able to make predictions at 5 separate elevations. The exact

mechanisms by which the model compresses and retrieves information from these channels

is an interesting topic of future research.

There are several promising research directions for future applications of deep learn-

ing to radar tasks. One direction is to improve performance by tracking recent progress

in deep learning for images, for example, to adopt architectures such as residual net-

works (He et al., 2016) instead of the VGG-16 architecture used in MistNet. A more

substantial change would be to explore novel architectures that are completely customized

for radar data, which would necessitate training models from scratch. We observed in
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every model we tested that pre-training improves performance, but the gains were less

than 1 % in MistNet’s final architecture, so pre-training may not be essential. Simple

two-layer networks trained from scratch are about 5 % worse than MistNet. An interme-

diate architecture may achieve a good trade-off between size and accuracy; or, a different

deep architecture tailored to radar data may outperform ImageNet-based models. Be-

cause radar data is sampled from a three-dimensional volume, a volumetric approach (Wu

et al., 2015; Maturana & Scherer, 2015) or point-based approach (Qi et al., 2017; Su et al.,

2018), may be more appropriate. Finally, the predictions can be improved by taking tem-

poral information into account, for example, to discriminate between weather and biology

based on different patterns of motion within the radar domain.

Although we focused on historical data, our results also provide several insights

about the use of dual polarization data. First, we provide a comprehensive empirical

validation of simple thresholding rules for discriminating precipitation from biology. The

common practice of thresholding correlation coefficient is effective; we also confirm the

observation of Kilambi et al. (2018) that thresholding depolarization ratio is slightly more

effective, and recommend this to practitioners of radar aeroecology.

We observed that the pixel-level classification performance of MistNet, which uses

only legacy data products, is better than simple thresholding rules using dual-pol prod-

ucts. A deep learning model that uses both legacy and dual-pol data products is an

obvious candidate to achieve the best possible classifications using dual-pol data. We

are unsure how this would compare with existing hydrometeor classification algorithms

from the meteorology community (Lim et al., 2005; Park et al., 2009). It is likely that

deep neural networks can learn to detect spatial patterns and textures that complement

the pixel-level information used by hydrometeor classification algorithms. Hydrometeor

classification algorithms, which discern 10 different classes, can potentially benefit future

applications of neural networks by providing better sources of training labels.

A tantalizing possibility is to use deep learning with dual polarization data to make

finer-grained classifications of biological scatterers, for example, to discriminate birds,
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bats, and insects, or more specific groups such as size classes of birds or finer taxonomic

groups (Stepanian et al., 2016; Bauer et al., 2018). While this is exciting, it is unclear what

distinctions are possible using weather radar data alone. Any research in this direction

must begin by assembling ground-truth data sets to evaluate and train algorithms. We

believe the most promising near-term applications will be recognition of specific patterns

in radar data such as bat and bird roosts or mayfly hatches, where humans can judge

with reasonable certainty the identity of the scatterers and therefore assemble evaluation

and training sets using available radar and geospatial data. For example, Chilson et al.

(2018) recently trained a deep learning model using large human-labeled data sets to

find radar scans containing swallow roosts (Bridge et al., 2016; Laughlin et al., 2016;

Kelly & Pletschet, 2017). Detailed analyses of other specific patterns in radar data (Van

Den Broeke, 2019) and cross-calibration with other sensors (Nilsson et al., 2018a; Liechti

et al., 2018) may reveal over time the ability to distinguish other biological phenomena.

Radar aeroecology is advancing rapidly and leading to significant discoveries about

continent-scale patterns of migration (Bauer et al., 2018). To overcome big data chal-

lenges, we are relying increasingly on algorithms for all parts of the analysis. As the field

moves quickly in this direction, we believe it is critical to advance methodological founda-

tions including software, data, and empirical benchmarks to validate individual compo-

nents of the analysis. MistNet is a general-purpose and empirically validated method to

discriminate precipitation from biology, and can enable large-scale, reproducible measure-

ments of whole migration systems. MistNet is available in the open-source WSRLIB

software package (Sheldon, 2017) and is part of the vol2bird algorithm in bioRad (Dokter

et al., 2018a).6

Acknowledgments

This work was supported by the US NSF Advances in Biological Informatics program

(ABI-1661259 to DS). CN, KH and ADs work was supported through the Edward W.

Rose Postdoctoral Fellowship.

6 It will be added per the terms of the data accessibility agreement prior to publication.

28



Data Accessibility

References

Ansari, S., Del Greco, S., Kearns, E., Brown, O., Wilkins, S., Ramamurthy, M., Weber,

J., May, R., Sundwall, J., Layton, J., Gold, A., Pasch, A. & Lakshmanan, V. (2018) Un-

locking the potential of NEXRAD data through NOAAs big data partnership. Bulletin

of the American Meteorological Society, 99, 189–204.

Bauer, S., Chapman, J.W., Reynolds, D.R., Alves, J.A., Dokter, A.M., Menz, M.M.H.,

Sapir, N., Ciach, M., Pettersson, L.B., Kelly, J.F., Leijnse, H. & Shamoun-Baranes,

J. (2017) From agricultural benefits to aviation safety: Realizing the potential of

continent-wide radar networks. BioScience, 67, 912–918.

Bauer, S., Shamoun-Baranes, J., Nilsson, C., Farnsworth, A., Kelly, J.F., Reynolds, D.R.,

Dokter, A.M., Krauel, J.F., Petterson, L.B., Horton, K.G. & Chapman, J.W. (2018)

The grand challenges of migration ecology that radar aeroecology can help answer.

Ecography.

Bridge, E.S., Pletschet, S.M., Fagin, T., Chilson, P.B., Horton, K.G., Broadfoot, K.R. &

Kelly, J.F. (2016) Persistence and habitat associations of Purple Martin roosts quanti-

fied via weather surveillance radar. Landscape Ecology, 31, 43–53.

Brooks, M. (1945) Electronics as a possible aid in the study of bird flight and migration.

Science, 101, 329.

Bruderer, B. (1997) The study of bird migration by radar part 1: The technical basis.

Naturwissenschaften, 84, 1–8.

Buler, J.J. & Dawson, D.K. (2014) Radar analysis of fall bird migration stopover sites in

the northeastern US. The Condor, 116, 357–370.

Buler, J.J. & Diehl, R.H. (2009) Quantifying bird density during migratory stopover using

29



weather surveillance radar. IEEE Transactions on Geoscience and Remote Sensing, 47,

2741–2751.

Buler, J.J., Randall, L.A., Fleskes, J.P., Barrow, Jr., W.C., Bogart, T. & Kluver, D.

(2012) Mapping wintering waterfowl distributions using weather surveillance radar.

PloS one, 7, e41571.

Casement, M.B. (1966) Migration across the Mediterranean observed by radar. Ibis, 108,

461–491.

Chilson, C., Avery, K., McGovern, A., Bridge, E., Sheldon, D. & Kelly, J. (2018) Au-

tomated detection of bird roosts using NEXRAD radar data and convolutional neural

networks. Remote Sensing in Ecology and Conservation.

Chilson, P.B., Frick, W.F., Stepanian, P.M., Shipley, J.R., Kunz, T.H. & Kelly, J.F.

(2012) Estimating animal densities in the aerosphere using weather radar: To Z or not

to Z? Ecosphere, 3.

Crum, T.D. & Alberty, R.L. (1993) The WSR-88D and the WSR-88D operational support

facility. Bulletin of the American Meteorological Society, 74, 1669–1687.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. & Fei-Fei, L. (2009) ImageNet: A large-

scale hierarchical image database. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 248–255. IEEE.

Dokter, A.M., Desmet, P., Spaaks, J.H., van Hoey, S., Veen, L., Verlinden, L., Nilsson,

C., Haase, G., Leijnse, H., Farnsworth, A., Bouten, W. & Shamoun-Baranes, J. (2018a)

bioRad: biological analysis and visualization of weather radar data. Ecography.

Dokter, A.M., Farnsworth, A., Fink, D., Ruiz-Gutierrez, V., Hochachka, W.M., La Sorte,

F.A., Robinson, O.J., Rosenberg, K.V. & Kelling, S. (2018b) Seasonal abundance and

survival of North America’s migratory avifauna determined by weather radar. Nature

ecology & evolution, 2, 1603.

30



Dokter, A.M., Liechti, F., Stark, H., Delobbe, L., Tabary, P. & Holleman, I. (2011) Bird

migration flight altitudes studied by a network of operational weather radars. Journal

of The Royal Society Interface, 8, 30–43.

Dokter, A.M., Shamoun-Baranes, J., Kemp, M.U., Tijm, S. & Holleman, I. (2013) High

altitude bird migration at temperate latitudes: a synoptic perspective on wind assis-

tance. PloS one, 8, e52300.
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A Stations used in contemporary evaluation

The stations used in the contemporary data set are listed in Table A.1 and shown on a

map in Figure A.1. One station was selected randomly from each of the 10° grid cells

shown on the map. Three additional stations were added manually because they were

known in some way to the researchers, either through prior radar analyses or availability

of corroborating data from other sensors.
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Station City Latitude Longitude

KCBX Boise, ID 43°29′27′′N 116°14′8′′W

KRIW Riverton, WY 43°3′58′′N 108°28′38′′W

KOAX Omaha, NE 41°19′13′′N 96°22′0′′W

KDLH Duluth, MN 46°50′13′′N 92°12′35′′W

KBGM∗ Binghamton, NY 42°11′59′′N 75°59′5′′W

KTYX Montague, NY 43°45′21′′N 75°40′48′′W

KOKX New York 40°51′56′′N 72°51′50′′W

KEYX Edwards AFB, CA 35°5′52′′N 117°33′39′′W

KICX Cedar City, UT 37°35′27′′N 112°51′44′′W

KEWX∗ Austin, TX 29°42′14′′N 98°1′42′′W

KGRK Fort Hood, TX 30°43′19′′N 97°22′59′′W

KTLX∗ Oklahoma City, OK 35°19′59′′N 96°13′57′′W

KMOB Mobile, AL 30°40′46′′N 88°14′23′′W

KJKL Jackson, KY 37°35′27′′N 83°18′47′′W

KBRO Brownsville, TX 25°54′58′′N 97°25′8′′W

KTBW Tampa, FL 27°42′20′′N 82°24′6′′W

Table A.1: Stations selected for the contemporary data set. Stations marked by asterisks
were selected manually; others were selected following a stratified random design.

B Additional details of MistNet and training

The full details of the MistNet architecture are shown in Figure B.2.7 Yellow blocks

indicate data, which includes input, output and intermediate activations; blue blocks

indicate learnable parameters; red blocks indicate network operations such as pooling,

up sampling, and convolutions. The backbone of the network (shared central pathway)

consists of several 3 × 3 convolutional layers, ReLU non-linearities, and pooling blocks,

following the VGG-16 architecture (Simonyan & Zisserman, 2015). The parameters of

this pathway are initialized from the ImageNet dataset. We zero-pad the 15 × 600 × 600

input to 15 × 608 × 608 to make the spatial dimensions divisible by 32, the overall factor

by which the input will be downsampled in the architecture. The first layer (adapter)

maps the 15 × 608 × 608 input to a 3 × 608 × 608 using a 1 × 1 convolution making it

compatible with the VGG-16 network that expects 3-channel images. Predictions for each

7 We will include this image as a separate high-resolution supplementary file in the published version of

the paper.
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Figure A.1: Map of WSR-88D stations (small blue circles), and selected stations (red di-
amonds). One station was selected randomly from each 10° grid cell, and three additional
stations were selected manually.

elevation are obtained by combining features from the pool3 (75 × 75), pool4 (36 × 36),

and relu7 (19 × 19) layer outputs followed by several convolutional, ReLU and upsam-

pling blocks to produce predictions of size 608 × 608, from which the central 600 × 600

portion is used. The 3-way softmax classifiers output the probability of the background,

biology and rain classes at each elevation. The predictions pathways for each elevation

are shown as separate pathways branching from the central shared backbone in the fig-

ure. Each pathway follows the architecture of the FCN8 network developed for image

segmentation (Long et al., 2015). All the parameters except for those in the central path-

way are initialized randomly. We learn the model parameters using stochastic gradient

descent at learning rate 10−4 and momentum 0.9 for 1.1 million iterations with batch

size 64. The contemporary set was used for validation. At prediction time, we ignore the

output probability for background class (since the identity of background pixels is known

at prediction time). For non-background pixels, we renormalize the probabilities of pre-

cipitation and biology to sum to one and use these to make predictions in conjunction

with the post-processing techniques described previously.

C Additional results
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Figure B.2: Architecture of MistNet. The network takes as input a 15 × 608 × 608
image and produces segmentation masks corresponding to 5 different elevations. Yellow
blocks indicate data, blue blocks indicate parameters initialized with the ImageNet pre-
trained model, green blocks indicate parameters initialized randomly, and red blocks
indicate network layers. (Best viewed digitally with zoom.)
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Figure C.3: Effectiveness of pixel-level classification using simple dual-pol thresholding
rules. The plots show F-score on biology classification versus threshold values based on
(a) ρHV and (b) DR.

Data set Pre-training? Precision Recall F-score

Historical (all)
no 92.0 99.2 95.5

yes 93.5 99.0 96.2

Historical (weather)
no 68.0 97.0 80.0

yes 72.6 96.1 82.7

Contemporary
no 96.1 99.3 97.7

yes 96.5 99.1 97.8

Table C.2: Performance of MistNet with and without ImageNet pre-training.

Data set Low-res. aug.? Precision Recall F-score

Historical (all)
no 93.7 98.5 96.0

yes 95.5 98.3 96.9

Historical (weather)
no 72.7 94.0 82.0

yes 72.6 96.1 82.7

Contemporary
no 96.5 99.1 97.8

yes 97.4 98.6 98.0

Table C.3: Performance of MistNet with and without data augmentation with low-
resolution rendering.
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Figure C.4: MistNet Segmentation Results. Segmentation results (red: rain, orange:
biology, blue: background) predicted by MistNet are shown along with the human
annotations in the ranges of 150km and 37.5km. Each example is shown as a stack of five
rows from top to bottom corresponding to the elevation angles from 0.5 to 4.5 degrees.
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