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Abstract

Although kernel methods efficiently use feature combinations
without computing them directly, they do not scale well with
the size of the training dataset. Factorization machines (FMs)
and related models, on the other hand, enable feature com-
binations efficiently, but their optimization generally requires
solving a non-convex problem. We present random feature
maps for the itemset kernel, which uses feature combina-
tions, and includes the ANOVA kernel, the all-subsets ker-
nel, and the standard dot product. Linear models using one
of our proposed maps can be used as an alternative to kernel
methods and FMs, resulting in better scalability during both
training and evaluation. We also present theoretical results for
a proposed map, discuss the relationship between factoriza-
tion machines and linear models using a proposed map for the
ANOVA kernel, and relate the proposed feature maps to prior
work. Furthermore, we show that the maps can be calculated
more efficiently by using a signed circulant matrix projection
technique. Finally, we demonstrate the effectiveness of using
the proposed maps for real-world datasets.

1 Introduction
Kernel methods enable learning in high, possibly infinite
dimensional feature spaces without explicitly expressing
them. In particular, kernels that model feature combina-
tions such as polynomial kernels, the ANOVA kernel, and
the all-subsets kernel (Blondel et al. 2016a; Shawe-Taylor
and Cristianini 2004) have been shown to be effective for
a number of tasks in computer vision and natural lan-
guage understanding (Lin, RoyChowdhury, and Maji 2015;
Fukui et al. 2016). However their scalability remains a chal-
lenge; support vector machines (SVMs) with non-linear ker-
nels requireO(n2) time andO(n2) memory for training and
O(n) time and memory for evaluation, where n is the num-
ber of training instances (Chang and Lin 2011).

To address this issue several researchers have proposed
randomized feature maps Z(·) : Rd 7→ RD for kernels
K(·, ·) : Rd × Rd 7→ R that satisfy

E[〈Z(x), Z(y)〉] = K(x,y). (1)

The idea is to perform classification, regression, or cluster-
ing on a corresponding high-dimensional feature space ap-
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proximately but efficiently using linear models in a low di-
mensional space by mapping the data points using Z(·). Ex-
amples include random Fourier feature maps that approxi-
mate shift-invariant kernels: K(x,y) = k(|x−y|) (Rahimi
and Recht 2008); random Maclaurin feature maps that ap-
proximate dot product kernels (Kar and Karnick 2012):
K(x,y) = k(〈x,y〉); and tensor sketching for polynomial
kernels: Km

P (x,y; c) := (c + 〈x,y〉)m (Pham and Pagh
2013). Although polynomial kernels are dot product ker-
nels and can be approximated by random Maclaurin feature
maps, tensor sketching can be more efficient.

Factorization machines (FMs) (Rendle 2010; 2012) and
variants (Blondel et al. 2016a; 2016b; Novikov, Trofimov,
and Oseledets 2016) also model feature combinations with-
out explicitly computing them, similar to kernel methods,
but have better scalability during evaluation. These meth-
ods can be thought of as a two-layer neural network with
polynomial activations with a fixed number of learnable pa-
rameters (See Equation (5).) However, unlike kernel meth-
ods, their optimization problem is generally non-convex and
difficult to solve. But due to their efficiency during evalu-
ation FMs are attractive for large-scale problems and have
been successfully applied to applications such as link pre-
diction and recommender systems. This work analyzes the
relationship between polynomial kernel models and factor-
ization machines in more detail.

Our contributions. We present a random feature map for
the itemset kernel that takes into account all feature combi-
nations within a family of itemsets S ⊆ 2[d]. To the best of
our knowledge, the random feature map for the itemset ker-
nel is novel. The itemset kernel includes the ANOVA ker-
nel, all-subsets kernel, and standard dot product, so linear
models using this map are an alternative to the ANOVA or
all-subsets kernel SVMs, FMs, and all-subsets model. They
scale well with the size of the training dataset, unlike ker-
nel methods, and their optimization problem is convex and
easy to solve, unlike that of FMs. We also present theoreti-
cal analyses of the proposed random feature map and discuss
the relationship between linear models trained on these fea-
tures and factorization machines. Furthermore, we present a
faster and more memory-efficient random feature map for
the ANOVA kernel based on the signed circulant matrix
technique (Feng, Hu, and Liao 2015). Finally, we evaluate
the effectiveness of the feature maps on several datasets.



2 Background and Related Work
2.1 Kernels Using Feature Combinations
First, we present the ANOVA kernel and all-subsets ker-
nel, which use feature combinations (Blondel et al. 2016a;
Shawe-Taylor and Cristianini 2004), and define the item-
set kernel. We also describe several models that use feature
combinations.

The ANOVA kernel is similar to the polynomial kernel.
The definition of anm-order ANOVA kernel betweenx,y ∈
Rd is

Km
A (x,y) :=

d∑
j1<···<jm

xj1 · · ·xjmyj1 · · · yjm , (2)

where 2 ≤ m ≤ d ∈ N is the order of the ANOVA ker-
nel. For convenience, 0/1-order ANOVA kernels are often
defined as K0

A(x,y) = 1 and K1
A(x,y) = 〈x,y〉. The

difference between the ANOVA kernel and the polynomial
kernel is that the ANOVA kernel does not use feature com-
binations that include the same feature (e.g., x1x1, x22x3)
while the polynomial kernel does. Although the evaluation
of the m-order ANOVA kernel involves O(dm) terms, it
can be computed in O(dm) time using dynamic program-
ming (Blondel et al. 2016a; Shawe-Taylor and Cristianini
2004). In some applications, ANOVA-kernel-based models
have achieved better performance than polynomial-kernel-
based models (Blondel et al. 2016a; 2016b). We discuss
these models later in this section.

While the ANOVA kernel uses onlym-order different fea-
ture combinations, the all-subsets kernel Kall uses all differ-
ent feature combinations and is defined as

Kall(x,y) :=

d∏
j=1

(1 + xjyj). (3)

Clearly, evaluation of the all-subsets kernel takes only O(d)
time.

Here, we define the itemset kernel. For a given family
of itemsets S ⊆ 2[d], where [d] = {1, . . . , d} and 2[d] =
{∅, {1}, {2}, . . . , {d}, {1, 2}, . . . , [d]}, we define the item-
set kernel as

KS(x,y) :=
∑
V ∈S

∏
j∈V

xjyj = 〈φS(x), φS(y)〉. (4)

The itemset kernel clearly uses feature combinations in the
family of itemsets S. The itemset kernel can be regarded as
an extension of the ANOVA kernel, all-subsets kernel, and
standard dot product. For example, when S = 2[d], K2[d]

clearly uses all feature combinations and hence is equivalent
to the all-subsets kernel Kall in Equation (3). When S =(
[d]
m

)
:= {V ⊆ [d] | |S| = m}, the itemset kernel KS

is equivalent to m-order ANOVA kernel Km
A . Furthermore,

when S = {{1}, . . . , {d}}, the itemset kernel KS clearly
represents the standard dot product.

2.2 Factorization Machines
Rendle proposed using a factorization machine (FM) as the
ANOVA-kernel-based model (Rendle 2010; 2012). The FM

model equation is

fFM(x;w,P ,λ) := 〈w,x〉+

k∑
s=1

λsK
2
A(ps,x), (5)

where w ∈ Rd, P ∈ Pd×k, and λ ∈ Rk are learnable pa-
rameters, and k ∈ N is a rank-hyper parameter. The com-
putational cost for evaluating FMs is O(dkm) and does
not depend on the amount of training data. However, the
FM optimization problem is non-convex and hence chal-
lenging. Fortunately, it can be solved relatively efficiently
using a coordinate descent method because it is multi-
convex w.r.t w1, . . . , wd, p1,1, . . . , pd,k. Although parame-
ter λ was not introduced in the original FMs (Rendle 2010;
2012), Blondel et al. showed that introducingλ increases the
capacity of FMs (Blondel et al. 2016b).

Polynomial networks (PNs) (Livni, Shalev-Shwartz, and
Shamir 2014) are models based on polynomial kernels. They
are depth two neural networks with a polynomial activation
function. Although both PNs and FMs use feature combina-
tions, there is a key difference: PNs can be represented by
the polynomial kernel while FMs can be represented by the
ANOVA kernel. This difference means PNs use feature com-
binations among the same features while FMs do not. Ex-
periments have shown that FMs achieve better performance
than PNs (Blondel et al. 2016a).

Blondel et al. proposed the all-subsets model (Blondel et
al. 2016a), which uses all feature combinations:

fall(x;P ,λ) :=

k∑
s=1

λsKall(ps,x). (6)

Although the all-subsets model sometimes performed better
than FMs and PNs on link prediction tasks, it tended to have
lower performance (Blondel et al. 2016a).

2.3 Random Feature Maps for Polynomial
Kernels

The random Maclaurin (RM) feature map (Kar and Karnick
2012) is for dot product kernels: K(x,y) = k(〈x,y〉). It
uses the Maclaurin expansion of k(·): k(x) =

∑∞
n=0 anx

n,
where an = k(n)(0)/n! is the n-th coefficient of the
Maclaurin series. It uses two distributions: porder(N =
n) = 1/pn+1, where p > 1, and the Rademacher distri-
bution (a fair coin distribution). Its computational cost is
O
(∑D

s=1Nsd
)

time and memory, whereNs (s ∈ [D]) is the
order of the s-th randomized feature, especially O(Ddm)
time and memory when the objective kernel is the homoge-
neous polynomial kernel: Km

HP(x,y) = 〈x,y〉m.1
The tensor sketching (TS) (Pham and Pagh 2013) is

a random feature map for homogeneous polynomial ker-
nels : Km

HP(x,y) = 〈x,y〉m. Because polynomial kernels
Km

P (x,y; c) = (c + 〈x,y〉)m can be written as Km
HP by

concatenating
√
c to each vector, a TS can approximateKm

P .

1When the objective kernel is a homogeneous polynomial ker-
nel, one can fix n = m and porder(N = m) = 1 otherwise 0; that
is, do not sample n.



Algorithm 1 Random Kernel Feature Map

Input: x ∈ Rd, S ⊆ 2[d]

1: Generate D Rademacher vectors ω1, . . . ,ωD ∈
{−1,+1}d

2: Compute D itemset kernels KS(x,ωs) for all s ∈ [D]

Output: Z(x) = 1√
D

(
KS(x,ω1), . . . ,KS(x,ωD)

)>
Although an RM feature map can also approximate polyno-
mial kernels, a TS can approximate them more efficiently.
It uses the count sketch method, which is a method for esti-
mating the frequency of all items in a stream, as a specific
random projection that approximates the dot product in the
original feature space. Although the standard dot product in
the original feature space can be approximated by using only
count sketch, Pham and Pagh proposed combining count
sketch with a fast algorithm for computing the count sketch
of the outer product without computing the outer product
directly, which was proposed by Pagh (Pagh 2013). Their
tensor sketch algorithm takes O(m(d+D logD)) time and
O(md logD) memory and is thus more efficient than the
random Maclaurin algorithm.

Linear models using the TS or RM feature map are a good
alternative to polynomial kernel SVMs and PNs (Kar and
Karnick 2012; Pham and Pagh 2013). Similarity, although
linear models using a random feature map that approxi-
mates the itemset kernel would be a good alternative for the
ANOVA or all-subsets kernel SVMs, FMs, and all-subsets
models, such a map has not yet been reported.

3 Random Feature Map for the Itemset
Kernel

We propose a random feature map for the itemset kernel.
As shown in Algorithm 1, the proposed random kernel (RK)
map is simple: (1) generate D Rademacher vectors from a
Rademacher distribution and (2) compute D itemset kernels
between the original feature vector and each Rademacher
vector. We next present some theoretical results for the RK
feature map.

Proposition 1. Let ZRK : Rd 7→ RD be the random kernel
(RK) feature map in Algorithm 1. Then, for all x,y ∈ Rd
and S ⊆ 2[d],

Eω1,...,ωD
[〈ZRK(x), ZRK(y)〉] = KS(x,y). (7)

Proposition 1 says that the proposed RK feature map ap-
proximates the itemset kernel. Hence, linear models using
the proposed RK feature map can use feature combinations
efficiently and are a good alternative to FMs and all-subsets
models.

We next analyze the precision of the RK feature map.
Let E(x,y) be the approximation error: E(x,y) :=
〈ZRK(x), ZRK(y)〉 − KS(x,y). We assume that the L1

norm of the feature vector is bounded: ‖x‖1 ≤ R, where
R ∈ R++. This assumption is the same as the one used in
previous research (Kar and Karnick 2012; Pham and Pagh

2013; Rahimi and Recht 2008). For convenience, we use the
same notation as Kar and Karnick (Kar and Karnick 2012):
Bp(0, R) = {x | ‖x‖p ≤ R}. With this notation, the as-
sumption above is written as x ∈ B1(0, R). Then, we have
the following useful absolute error bound.
Lemma 1. For all x,y ∈ B1(0, R) ⊂ Rd, and S ⊆ 2[d],

p(|E(x,y)| ≥ ε) ≤ 2 exp

(
−Dε2

2e4R

)
. (8)

This upper bound does not depend on the family of item-
sets S or on the dimension of the original feature vectors d.
This result comes from the assumption that data points are
restricted in B1(0, R).

Next, we consider the uniform bound on the absolute error
of the RK feature map. Kar and Karnick (Kar and Karnick
2012) derived the uniform bound on the absolute error of
the RM feature map and we follow their approach. Let the
domain of feature vectors B ⊂ B1(0, R) be the compact
subset of Rd. Then, B can be covered by a finite number
of balls (Cucker and Smale 2002), and one can obtain the
following uniform bound.
Lemma 2. Let B ⊂ B1(0, R) be a compact subset of Rd.
Then, for all S ⊆ 2[d],

p

(
sup

x,y∈B
|E(x,y)| ≥ ε

)
≤ 2

(
32R
√
de2R

ε

)2d

exp

(
−Dε

2

8e4R

)
. (9)

This uniform bound says that, by taking D =

Ω
(
de4R

ε2 log
(
R
√
de2R

εδ

))
, the absolute error is uniformly

lower than a ε with a probability of at least 1 − δ. This uni-
form bound also does not depend on the family of itemsets
S; it depends only on ε, the dimension of random feature
map D, the dimension of the original feature vectors d, and
the upper bound on the L1 norm of the original feature vec-
tors R. The behavior of this uniform bound w.r.t d, ε, and δ
is expressed in the form of D = Ω

(
d
ε2 log

(√
d
εδ

))
. This is

the same as for the RM feature map (Kar and Karnick 2012).
We have discussed the upper bounds of the RK feature

map for the itemset kernel. Next, we consider the absolute
error bound for KS = Km

A (that is, S =
(
[d]
m

)
). Here, we

also assume that x ∈ B1(0, R).

Lemma 3. Let S =
(
[d]
m

)
. Then, for all x,y ∈ B1(0, R) ⊂

Rd,

p(|E(x,y)| ≥ ε) ≤ 2 exp

(
− Dε2

2R4m

)
. (10)

The absolute error bound of Lemma 3 is the same as the
absolute error bound of the Tensor Sketching (Pham and
Pagh 2013).

As described above, the algorithm of the proposed RK
feature map uses the Rademacher distribution for random
vectors. Here, we discuss the generalized RK feature map,
which allows the use of other distributions.



Proposition 2. If the distribution of ωs for all s ∈ [D] in
Algorithm 1 has (i) a mean of 0 and (ii) a variance of 1, the
RK feature map approximates the itemset kernel.

There are many distributions with a mean of 0 and a vari-
ance of 1: the standard Gaussian distribution N (0, 1), the
uniform distribution U(−

√
3,
√

3), the Laplace distribution
Laplace

(
0, 1/
√

2
)

= 1√
2

exp
(
−
√

2|ω|
)
, and so on. Which

distribution should be used? The next lemma says that the
Rademacher distribution should be used.

Lemma 4. Let P0,1 be the set of all distributions with a
mean of 0 and a variance of 1, and let p∗ ∈ P0,1 be the
Rademacher distribution. Then, for all p ∈ P0,1 and S ⊂
2[d],

sup
x,y∈B∞(0,R)

Vω1,...,ωD∼p∗ [〈ZRK(x), ZRK(y)〉]

≤ sup
x,y∈B∞(0,R)

Vω1,...,ωD∼p[〈ZRK(x), ZRK(y)〉]. (11)

That is, a Rademacher distribution achieves the minimax op-
timal variance for the RK feature map among the valid dis-
tributions.

Finally, we discuss the computational complexity of the
RK feature map in two special cases. When KS(·, ·) =
Km

A (·, ·), a D-dimensional RK feature map takes O(Ddm)
time and O(Dd) memory because an m-order ANOVA
kernel can be computed in O(dm) time and O(m) mem-
ory by using dynamic programming (Blondel et al. 2016a;
Shawe-Taylor and Cristianini 2004). This is the same as
the computational cost for an RM feature map for an m-
order polynomial kernel. For KS(·, ·) = Kall(·, ·), a D-
dimensional RK feature map can be computed in O(Dd)
time and O(Dd) memory.

4 Loglinear Time RK Feature Map for the
ANOVA Kernel

As described above, the computational cost of the proposed
RK feature map in Algorithm 1 clearly depends on the com-
putational cost of the itemset kernel KS . This is a draw-
back of the RK feature map. The computational cost of the
RK feature map for an m-order ANOVA kernel is O(Ddm)
time. This cost is the same as that of the RM feature map for
an m-order polynomial kernel and larger than that for the
TS (O(m(d+D logD))). The number of parameters for the
proposed method for an m-order ANOVA kernel is O(Dd),
which is also larger than that of the TS (O(md logD)) be-
cause m << d < D in most cases.

While the random Fourier (RF) feature map, which
does not have the order parameter m (ZRF(x) =√

2/D cos(Πx+b), where Π ∈ RD×d, b ∈ Rd), also takes
O(Dd) time and O(Dd) memory, methods have recently
been proposed that take O(D log d) time and O(D) mem-
ory (Feng, Hu, and Liao 2015; Le, Sarlós, and Smola 2013).
In this section, we present a faster and more memory effi-
cient RK feature map for the ANOVA kernel based on these
recently proposed methods, especially that of Feng, Hu, and
Liao, which takes O(mD log d) time and O(D) memory.

First we explain signed circulant random feature
(SCRF) (Feng, Hu, and Liao 2015). The O(Dd) time com-
plexity of the RF feature map is caused by the computation
of Πx. The SCRF reduced it to O(D log d) time without
loss of the key property of the RF feature map; approximat-
ing the shift-invariant kernel. In the SCRF, without loss of
generality, it is assumed that D is divisible by d (D/d := T )
and that Π is replaced by the concatenation of T projection
matrices: Π̃ = (P (1);P (2); · · · ;P (T )). P (t) ∈ Rd×d, t ∈
[T ], is called a signed circulant random matrix, which is a
variant of the circulant matrix: P (t) = diag(σt)circ(ωt),
where σt ∈ {−1,+1}d is a Rademacher vector, ωt ∈ Rd is
a random vector generated from an appropriate distribution
(e.g., the Gaussian distribution for the radial basis function
kernel), and circ(ωt) ∈ Rd×d is a circulant matrix in which
the first column is ωt. This formulation clearly reduces the
memory required for the RF feature map from O(Dd) to
O(2Td) = O(2D). Moreover, the product of Π̃ and x sur-
prisingly can be converted into fast Fourier transform, in-
verse fast Fourier transform, and the element-wise product
of vectors which means that time complexity can be reduced
from O(Dd) to O(D log d).

Unfortunately, it is difficult to apply the SCRF technique
to the RK feature map because the computation of the item-
set kernel does not require the product of a random projec-
tion matrix and a feature vector in general. Fortunately, the
ANOVA kernel, which is a special case of the itemset kernel,
can be computed efficiently (Blondel et al. 2016b) by using
recursion:

Km
A (ω,x) =

1

m

m∑
t=1

(−1)t+1Km−t
A (ω,x)〈ω◦t,x◦t〉,

(12)

where x◦p represents the p-times element-wise product of
x. Hence, the RK feature map for the ANOVA kernel can be
written in matrix form:

ZRK(x) =
1

m
√
D

m∑
t=1

am−t ◦ (Ω◦tx◦t), (13)

where Ω := (ω>1 ; · · · ;ω>D) ∈ RD×d is a matrix in which
each row is the random vector of the RK map, and at :=
(Kt

A(ω1,x), . . . ,Kt
A(ωD,x))> ∈ RD is the vector of the

t-order ANOVA kernels (clearly, at can be regarded as an
RK feature of the t-order ANOVA kernel). Although com-
puting Ω◦t in Equation (13) seems costly, it is actually triv-
ial when each random vector ωs for all s ∈ [D] is generated
from a Rademacher distribution. In this case, Ω◦t = Ω if
t is odd; otherwise, it is an all-ones matrix. Therefore, the
SCRF technique can be applied to the RK feature map for
the ANOVA kernel. Doing this reduces the computational
cost of Ω◦tx◦t from O(Dd) to O(D log d) and thus that of
the RK feature map for an m-order ANOVA kernel from
O(mDd) time and O(Dd) memory to O(mD log d) time
and O(D) memory. We call a random kernel feature map
with the signed circulant random feature a signed circulant
random kernel (SCRK) feature map.

Although the original SCRF for the RF feature map intro-
duces σ, resulting in a low variance estimator for the shift-



Method D = 2d D = 4d D = 8d D = 16d
RK (Rademacher) 6.53e-4 ± 3.86e-5 4.62e-4 ± 2.19e-5 3.29e-4 ± 1.26e-5 2.33e-4 ± 1.02e-5

RK (Gaussian) 7.31e-4 ± 6.82e-5 5.22e-4 ± 3.71e-5 3.73e-4 ± 1.83e-5 2.62e-4 ± 1.06e-5
RK (Uniform) 6.85e-4 ± 4.96e-5 4.92e-4 ± 2.90e-5 3.50e-4 ± 1.68e-5 2.47e-4 ± 1.05e-5
RK (Laplace) 8.29e-4 ± 1.36e-4 6.16e-4 ± 8.30e-5 4.39e-4 ± 4.03e-5 3.11e-4 ± 2.00e-5

SCRK 7.22e-4 ± 2.13e-4 5.01e-4 ± 9.74e-5 3.60e-4 ± 8.46e-5 2.54e-4 ± 4.34e-5
(a) Second-order ANOVA kernel

Method D = 2d D = 4d D = 8d D = 16d
RK (Rademacher) 2.26e-5 ± 1.74e-6 1.64e-5 ± 8.69e-7 1.17e-5 ± 4.70e-7 8.35e-6 ± 2.29e-7

RK (Gaussian) 2.67e-5 ± 3.89e-6 1.97e-5 ± 2.35e-6 1.45e-5 ± 1.17e-6 1.05e-5 ± 6.06e-7
RK (Uniform) 2.40e-5 ± 2.58e-6 1.77e-5 ± 1.46e-6 1.30e-5 ± 8.25e-7 9.27e-6 ± 3.93e-7
RK (Laplace) 3.09e-5 ± 8.56e-6 2.44e-5 ± 5.08e-6 1.80e-5 ± 3.01e-6 1.31e-5 ± 1.54e-6

SCRK 2.29e-5 ± 4.93e-6 1.65e-5 ± 2.28e-6 1.19e-5 ± 1.50e-6 8.40e-6 ± 6.73e-7
(b) Third-order ANOVA kernel

Method D = 2d D = 4d D = 8d D = 16d
RK (Rademacher) 4.24e-2 ± 1.14e-2 2.94e-2 ± 7.07e-3 2.01e-2 ± 4.79e-3 1.49e-2 ± 4.94e-3

RK (Gaussian) 4.25e-2 ± 1.23e-2 3.07e-2 ± 8.23e-3 2.12e-2 ± 5.29e-3 1.54e-2 ± 4.79e-3
RK (Uniform) 4.32e-2 ± 1.11e-2 2.96e-2 ± 7.61e-3 1.99e-2 ± 5.05e-3 1.45e-2 ± 3.93e-3
RK (Laplace) 4.15e-2 ± 1.04e-2 2.89e-2 ± 7.34e-3 2.00e-2 ± 5.12e-3 1.49e-2 ± 4.17e-3

(c) All-subsets kernel

Table 1: Absolute errors of RK feature maps for second-order ANOVA kernel, third-order ANOVA kernel, and all-subsets
kernel using different distributions for Movielens 100K dataset.

invariant kernel, when order m is even, σ is unfortunately
meaningless in the proposed RK feature map for them-order
ANOVA kernel case because Km

A (−ω,x) = Km
A (ω,x).

Therefore, the SCRK feature map for an even-order ANOVA
kernel may not be effective.

5 Relationship between FMs and RK Feature
Map for the ANOVA Kernel

The equation for linear models using the RK feature map for
the second-order ANOVA kernel ZRK(x) is:

fLM(ZRK(x); w̃) =
1√
D

D∑
s=1

w̃sK
2
A(ωs,x), (14)

where w̃ ∈ RD is the weight vector for the RK feature map
ZRK(x). Hence, linear models using the RK feature map
can be regarded as FMs with λ = w̃/

√
D and only one

learnable parameter λ and without the linear term. There-
fore, theoretical results that guarantee the generalization er-
ror of linear models using the RK map can be applied to the
theoretical analysis of that of FMs. We leave this to future
work. The same relationship holds between linear models
using the RK feature map for the all-subsets kernel and the
all-subsets model. Interestingly, it also holds between linear
models using the RM feature map for the polynomial kernel
and multi-convex PNs, which are multi-convex formulation
models of PNs (Blondel et al. 2016b).

6 Evaluation
We first evaluated the accuracy of our proposed RK feature
map on the Movielens 100K dataset (Harper and Konstan

2016), which is a dataset for recommender systems. The age,
living area, gender, and occupation of users and the genre
and release year of items were used as features in the same
way as Blondel et al. (Blondel et al. 2016a). The dimension
of the feature vectors was 78.

We calculated the absolute error of the approximation of
ANOVA kernels (m = 2 or 3) and all-subsets kernel on the
training datasets. Each feature vector was normalized by its
L1 norm. Only 10, 000 instances were used. We calculated
the mean absolute errors for these instances for 100 trials
using Rademacher, Gaussian, Uniform, and Laplace distri-
butions in the RK feature maps and compared the results.
For the ANOVA kernels, we also compared them with the
SCRK feature map. We varied the dimension of the ran-
dom features: 2, 4, 8 and 16 times that of the original fea-
ture vectors. We used Scipy (Jones, Oliphant, and Peterson
2001) implementations of FFT and IFFT (scipy.fftpack) in
the SCRK and TS feature maps.

As shown in Table 1, the RK feature map with the
Rademacher distribution had the lowest absolute error and
variance for the second- and third-order ANOVA kernels.
In contrast, the differences in the absolute errors between
the distributions were small for the all-subsets kernel. The
variances were large even for D = 16d, so the RK feature
map for the all-subsets kernel requires a larger D. For the
third-order ANOVA kernel, the performance of the SCRK
feature map was as good as that of the RK feature map with
the Rademacher distribution. However, for the second-order
ANOVA kernel, that of the SCRK feature map was not good.
As described above, the SCRK feature map is not efficient
when order m is even because σ is meaningless.
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Figure 1: Comparison of mapping times of RK and SCRK
feature maps for second-order ANOVA kernel with different
dimensions of original feature vector for synthesis dataset (d
is shown in log scale).

We next evaluated the effectiveness of the SCRK fea-
ture map, which is more time and memory efficient than
the RK one w.r.t the dimension of the original feature vec-
tor. We created synthesis data with various dimensions of
the original features and compared the mapping times of the
SCRK and RK feature maps for the second-order ANOVA
kernel. We used N (0, 1) as the distribution of original fea-
tures and changed the dimension of the original features:
d = 512, 1024, 2048 and 4096. We set D = 8092 for
all d.

As shown in Figure 1, when the dimension of the origi-
nal feature vector d was large, the SCRK feature map was
more efficient. Although the running time of the RK fea-
ture map increased linearly w.r.t d, that of the SCRK feature
map increased logarithmically. However, when d = 512, the
RK feature map was faster than the SCRK feature map. This
may be because of the following reasons. First, the differ-
ence between d and log d is small, if d is small. Furthermore,
the SCRK feature map requires FFT and IFFT, and hence its
dropped constants in Big-O notation are larger than that of
the RK feature map.

We next evaluated the performance of linear models us-
ing our proposed RK/SCRK feature maps for the Movie-
lens 100K dataset. We converted the recommender system
problem to a binary classification problem. We binarized the
original ratings (from 1 to 5) by using 5 as a threshold. There
were 21, 200, 1, 000, and 20, 202 training, validation, and
testing examples. We normalized each feature vector and
varied the random features dimension in a manner similar
to that used in the first evaluation. We compared the accura-
cies and learning and testing times for linear SVMs using the
proposed RK feature map for the ANOVA/all-subsets ker-
nel, for linear SVMs using the SCRK feature map for the
ANOVA kernel, for non-linear SVMs with the ANOVA/all-
subsets kernel, and for m-order FMs, and for the all-subsets
model. Although there was a linear term in the original FMs,

we ignored it because using it or not had little effect on ac-
curacy. All the methods have a regularization hyperparam-
eter, which we set on the basis of the validation accuracy
of the non-linear SVMs. For the linear SVMs using ran-
dom feature maps, we ran ten trials with a different ran-
dom seed for each trial and calculated the mean of the val-
ues. We used a Rademacher distribution for the random vec-
tors. For the FMs and all-subsets model, we also ran ten
trials and calculated the mean of the values. We used co-
ordinate descent (Blondel et al. 2016a) as the optimization
method. Because this optimization requires many iterations
and much time, we ran the optimization process for the same
length of time used for the non-linear SVMs. For the rank
hyperparameter, we followed Blondel et al. (Blondel et al.
2016a) and set it to 30. We used LinearSVC and SVC in
scikit-learn (Pedregosa et al. 2011) as implementations of
linear SVMs and non-linear SVMs. LinearSVC used liblin-
ear (Fan et al. 2008) and SVC used libsvm (Chang and Lin
2011). For the implementation of FMs, we used Factoriza-
tionMachineClassifier in polylearn (Niculae 2016).

As shown in the Figure 2, when the number of random
features D = 1, 248 = 16d, the accuracies of the linear
SVMs using the proposed RK feature map were as good as
those of the non-linear SVMs, FMs, and all-subsets model.
Furthermore, even though D = 1, 248, their training and
testing times were 2–5 times less than those of the non-linear
SVMs, FMs, and all-subsets model. Because the dimension
of the original feature vector was small, the running times of
the linear SVMs using the SCRK feature map were longer
than those of the linear SVMs using the RK feature map
when m = 3. The accuracies of the linear SVMs using the
SCRK feature map were as good as those of the linear SVMs
using the RK feature map, and the SCRK feature map re-
quired only O(D log d) time.

We also compared the accuracies and learning and test-
ing times among random-feature-based methods for the
polynomial-like kernel: linear SVMs using the proposed
RK/SCRK feature map for the ANOVA kernel, TS feature
map, and the RM feature map for the polynomial kernel.
Similar to the evaluation above, we set the regularization pa-
rameter on the basis of the validation accuracy of the non-
linear SVMs (we also ran the polynomial kernel SVMs). We
again ran ten trials with a different random seed for each trial
and calculated the mean of the values.

As shown in Figure 3, when the number of random fea-
tures D is small, the accuracies of linear SVMs using the
TS/RM feature map were better than those of linear SVMs
using the RK feature map. However, when the numbers were
larger, the accuracies of linear SVMs using the RK feature
map were as good as those of linear SVMs using the TS
feature map. The linear SVMs using the RM feature map
achieved the best performance. However, their running times
were clearly longer compared to those of the other methods.
Moreover, the RM feature map is not memory efficient: it re-
quires O(Ddm) memory for the m-order polynomial kernel
while the proposed RK/SCRK feature map for an m-order
ANOVA kernel requires only O(Dd)/O(D) memory. The
training and testing times of linear SVMs using the RK fea-
ture map were the lowest among all methods.
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Figure 2: Test accuracies and times for linear SVM using RK feature map approximating (a) second-order ANOVA kernel, (b)
third-order ANOVA kernel, and (c) all-subsets kernel and for two existing methods for Movielens 100K dataset. Upper graphs
show test accuracies; lower ones show training and test times (time is shown in log scale).
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Figure 3: Test accuracies and times for linear SVM using RK/SCRK feature map approximating second-order ANOVA kernel
and linear SVM using RM/TS feature map approximating second-order polynomial kernel for Movielens 100K dataset. Left
graph shows test accuracies; right one shows training and test times (time is shown in log scale).

We also evaluated the performance of the linear models
using the RK/SCRK feature maps and the existing models
for the phishing and IJCNN datasets (Mohammad, Thabtah,
and McCluskey 2012; Prokhorov 2001). The experimental
results were similar to those for the Movielens 100K dataset.

7 Conclusion
We presented a random feature map that approximates the
itemset kernel. Although the itemset kernel depends on S,
the error bound we presented does not depend on it or the
original dimension d. Moreover, we showed that the pro-



posed random kernel feature can be used not only with the
Rademacher distribution but also with other distributions
with zero mean and unit variance. Furthermore, we showed
that the Rademacher distribution achieves the min-max op-
timal variance both theoretically and empirically. We also
showed how to efficiently compute the random kernel fea-
ture map for the ANOVA kernel by using a signed circulant
matrix projection technique. Our evaluation showed that lin-
ear models using the proposed random kernel feature map
are good alternatives to factorization machines and kernel
methods for several classification tasks.
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