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Abstract

We propose a method for recognizing attributes, such as
the gender, hair style and types of clothes of people under
large variation in viewpoint, pose, articulation and occlu-
sion typical of personal photo album images. Robust at-
tribute classi�ers under such conditions must be invariant
to pose, but inferring the pose in itself is a challenging prob-
lem. We use a part-based approach based on poselets. Our
parts implicitly decompose the aspect (the pose and view-
point). We train attribute classi�ers for each such aspect
and we combine them together in a discriminative model.
We propose a new dataset of 8000 people with annotated
attributes. Our method performs very well on this dataset,
signi�cantly outperforming a baseline built on the spatial
pyramid match kernel method. On gender recognition we
outperform a commercial face recognition system.

1. Introduction

Humans have an impressive ability to reliably recognize
the gender of people under arbitrary viewpoint and articula-
tion, even when presented with a cropped part of the image
(Figure1). Clearly we don't rely on the appearance of a
single body part; gender can be inferred from the hair style,
body proportions, types of clothes and accessories. We use
different cues depending on the pose and viewpoint, and the
same is true for other attributes, such as the hair style, pres-
ence of glasses and types of clothes.

Let us consider how we might build a system for clas-
sifying gender and other attributes. If we could somehow
isolate image patches corresponding to the same body part
from the same viewpoint then attribute classi�cation be-
comes much easier. If we are not able to detect and align the
parts well, however, the effect of nuisance variables, suchas
the pose, viewpoint and localization will affect the feature
vector much more than the relevant signal (Figure2). The
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Figure 1. People can easily infer the gender based on the face, the
hair style, the body proportions and the types of clothes. A robust
gender classi�er should take into account all such available cues.

Figure 2. The problem of determining the people wearing hats
(top) vs. no hats (bottom) is dif�cult in unconstrained setup (left).
If we can detect and align parts from the same view (right) the
problem becomes much easier.

visual cues associated with the attribute ”has glasses”, for
example, are very subtle and different for a person facing
the cameravs. a person looking sideways. As we show on
Table2, a generic classi�er for has-glasses performs only
slightly better than chance when trained on the entire per-
son, but works much better when trained on aligned frontal
faces.

Localizing body parts, however, is in itself a very hard
problem, e.g. [13]. Frontal face is an exception, which
is why virtually all state-of-the-art gender recognition ap-
proaches rely on carefully aligned frontal faces.



We develop an approach to solve this problem for gender
as well as for other attributes, such the hair style, presence
of glasses or hat, and the style of clothes. Speci�cally, we
decompose the image into a set of parts,poselets[4], each
capturing a salient pattern corresponding to a given view-
point and local pose, such as the one shown in Figure2
(right). This decomposition allows us to combine evidence
from different parts of the body at different scales.The ac-
tivations of different poselets give us a robust distributed
representation of a person from which attributes can
be inferred without explicitly localizing different body
parts.

Prior work on gender recognition has focused on high
resolution frontal faces or pedestrians and requires a face
detector and alignment modules. Not only do we not need
such modules, our method gracefully deals with pro�les,
back-facing people or even when the face is occluded or
at too low a resolution, because we leverage information
at multiple scales and aspects. Even though we use stan-
dard HOG and color features, on the task of gender recogni-
tion we outperform a leading commercial face recognition
system that relies on proprietary biometric analysis. Fur-
thermore, the same mechanism allows us to handle not just
gender but any other attribute.

We illustrate our approach on the task of determining
nine attributes of people – is-male, has-hat, has-t-shirt,
has-shorts, has-jeans, has-long-hair, has-glasses, has-long-
sleeves, has-long-pants. The training input is a set of images
in which the people of interest are speci�ed via their visible
bounds and the values of their attributes. We use a three
layer feed-forward network (Figure4). In the �rst layer we
predict the attribute value conditioned on each poselet type,
such as the gender given a frontal face. In the second layer
we combine the information from all such predictions (such
as the gender given the face, the legs and the full body) into
a single attribute classi�cation. In the third layer we lever-
age dependencies between different attributes, such as the
fact that gender is correlated with the presence of long hair.

Our second contribution is a new dataset for attribute
classi�cation of people in unconstrained settings consist-
ing of 8035 examples labelled with the nine attributes (Sec-
tion 3). Although attribute recognition of people has been
studied for frontal faces [19] and pedestrians [6], our dataset
is signi�cantly harder; it exhibits a large variation in view-
point, pose, occlusion and self-occlusion, close proximity
to other people, variable resolution, etc. (Figure3).

2. Related Work

Prior research on attributes has generally followed two
directions. One line of work has used attributes as an inter-
mediate representation layer with the goal of transfer learn-
ing as well as describing properties of objects [20, 12].
Farhadiet al. propose a method for localizing part-based

attributes, such as a head or a wheel [11]. Recognition and
localization of low-level attributes in a generative frame-
work has also been proposed by Ferrari and Zisserman [14].
Joint learning of classes and attributes has been explored us-
ing Multiple Instance Learning [27] and latent SVMs [29].
Automated discovery of attributes from text and associated
images has also been explored [14, 1, 28]. The key advan-
tage of our method is that our parts implicitly model the
pose and camera view, which we believe results in more
powerful discrimination capabilities.

A second line of work has focused on attributes of peo-
ple. Gender recognition methods using neural networks
date back to the early 1990s [8, 16]. Support vector ma-
chines [24] and AdaBoost classi�ers on Haar features [25]
have been proposed for gender and race recognition. Kumar
et al. propose using face attributes for the purpose of face
recognition [19] as well as visual search [18]. Gallagher
and Chen have explored inferring gender and age from vi-
sual features combined with names [15]. Gender, age and
weight attributes have also been successfully extracted from
3D motion capture data [26]. These approaches generally
require careful alignment of the data, and most of them ap-
ply to frontal faces only. We leverage the full body under
any articulation without the need for alignment.

In our work we are inspired by poselets, which have been
used effectively for recognition, segmentation and action
classi�cation of people [3, 4, 23, 5]. These problems are
similar to ours, because the articulation and camera views
are also latent parameters when recognizing and segmenting
people. Thus we can think of poselets as a general purpose
engine for decomposing the viewpoint and pose from the
appearance.

3. The Attributes of People Dataset

There are several existing datasets of attributes of people
but we did not �nd any suitable for the context in which
our method is used. FaceTracer [18] uses 15000 faces and
full body, but provides only URLs to images and many of
the images are no longer available. Other datasets, such as
PubFig [19] and the Labeled Faces in the Wild [17] include
only frontal faces.

We propose a new dataset of 8035 images, each cen-
tered at a full body of a person. The images are collected
from the H3D [4] dataset and the PASCAL VOC 2010 [10]
training and validation datasets for the person category, but
instead of the low-resolution versions used in PASCAL,
we collected the full resolution equivalents on Flickr. For
each person we cropped the high resolution image around
that person, leaving suf�cient background around the visi-
ble bounds and scaled it so the distance between hips and
shoulders is 200 pixels. For each such image we provide
the visible bounds of the person in the center and a list of
bounds of all other people in the background.



Figure 3. Fifty images drawn at random from our test set and
slightly cropped to the same aspect ratio. Each image is centered
at a target person. Our dataset is challenging as it has a large vari-
ability of viewpoints, poses, and occlusions. In some casespeople
are close to each other which makes identifying the correct person
challenging as well. To aid identi�cation we provide the visible
bounds of the target person, as well as the bounds of all otherpeo-
ple in the image.

Attribute True False
is male 3395 2365
has hat 1096 5532
has t-shirt 1019 3350
has shorts 477 2020
has jeans 771 1612

Attribute True False
long hair 1456 3361
glasses 1238 4083
long sleeves 3045 3099
long pants 2020 760

Table 1. Number of positive and negative labels for our attributes.

We used Amazon Mechanical Turk to provide labels for
all attributes on all annotations by �ve independent annota-
tors [22]. A label was considered as ground truth if at least
4 of the 5 annotators agreed on the value of the label. We
discarded 501 annotations in which less than two attributes
were speci�ed as ground truths which left us with 8035 im-
ages. Table1 shows the distribution of labels. We split the
images into 2003 training, 2010 validation and 4022 test
images by ensuring that no cropped images of different set
come from the same source image and by maintaining a bal-
anced distribution of the H3D and PASCAL images in each
set. Figure3 shows 50 examples drawn at random from our
test set.

4. Algorithm Overview

Our algorithm at test time is shown on Figure4 and can be
summarized as follows:
Step 1 We detect the poselets on the test image and de-
termine which ones are true positives referring to the target
person (Section5). Let qi denote the probability of poselet
type i . qi is the score of the poselet classi�er transformed
by a logistic, with zero mean, or 0 if the poselet was not

detected.

Step 2 For each poselet typei we extract a feature vector
� i from the image patch of the activation, as described in
Section6. The feature vector consists of HOG cells at three
scales, a color histogram and skin-mask features.

Step 3 For each poselet typei and each attributej we
evaluate a classi�err i

j for attribute j conditioned on the
poseleti . We call these theposelet-level attribute classi-
�ers. We use a linear SVM followed by a logisticg:

r i
j = g(wi

j
T

� i + bi
j ) (1)

wherewi
j andbi

j are the weight vector and the bias term of
the SVM. These classi�ers attempt to determine the pres-
ence of an attribute from a given part of the person under a
given viewpoint, such as the has-hat classi�er for a frontal
face shown on Figure2.

Step 4 We zero-center the outputs of the poselet-level at-
tribute classi�ers, modulate them by the poselet detection
probabilitiesqi and we use them as an input to a second-
level classi�er for each attributej , called aperson-level
attribute classi�er, whose goal is to combine the evidence
from all body parts. It emphasizes poselets from viewpoints
that are more frequent and more discriminative. It is also a
linear classi�er with a logisticg:

 i
j = qi (r i

j � 0:5) (2)

sj = g(w0
j

T  j + b0
j ) (3)

Step 5 Finally, for each attributej , we evaluate a third-
level classi�er which we call thecontext-level attribute clas-
si�er . Its feature vector is the scores of all person-level
classi�ers for all attributes,sj . This classi�er exploits the
correlations between the attributes, such as gendervs. the
presence of a skirt, or short-sleevesvs. short-pants. We use
an SVM with quadratic kernel which we found empirically
to work best. We denote the score of this classi�er withSj ,
which is the output of our algorithm.

5. Training and Using Poselets

We use the method of Bourdevet al. [3] to train 1200 pose-
lets using images from the training and validation sets. In-
stead of all poselets having the same aspect ratios, we used
four aspect ratios: 96x64, 64x64, 64x96 and 64x128 and
trained 300 poselets of each. For each poselet, during train-
ing, we build a soft mask for the probability of each body
component (such as hair, face, upper clothes, lower clothes,
etc) at each location within the normalized poselet patch
(Figure5) using body component annotations on the H3D
dataset [4].

We used the method of [3] to detect poselets in an image,
cluster them into person detection hypotheses and predict



Figure 4. Overview of our algorithm at test time. Poselets are de-
tected on the test image; detection scoresqi are computed and fea-
tures� i are extracted. Poselet-level attribute classi�ersr i

j are eval-
uated for every poselet activationi and attributej (unless the at-
tribute is part-speci�c and the poselet does not cover the part, such
as the has-hat for three of the four shown poselets). A person-level
attribute classi�ersj for every attribute combines the feedback of
all poselet-level classi�ers. A context-level classi�erSj for the at-
tribute takes into account predictions of the other attributes. This
picture uses 4 poselets and 3 attributes, but our system uses1200
poselets and 9 attributes.

Figure 5.Left: Examples of a poselet.Right: The poselet soft
mask for the hair, face and upper clothes.

the bounds of each person. We now need to decide which
cluster of poselets refers to the person in the center of the
image and which ones refer to people in the background.
Our dataset contains many instances of people very close
to each other, so simply picking the bounding box closest
to the center of the image is not always correct. Instead it
is better to �nd the optimally global assignment of all hy-
potheses to all truth bounding boxes by preferring to assign
a bounding box to a given truth if its intersection over union
is high, and by giving preference to hypotheses with higher
scores, which are less likely to be false positives. We formu-
late this problem as �nding the maximum �ow in a bipartite
graph and we used the Hungarian algorithm to �nd the op-
timal matching. The result is a set of poselet activationsqi

that refer to the foreground person.

6. Poselet-Level Features� i

In this section we describe our poselet-level features� i ,
which consist of HOG features, color histogram and skin-
speci�c features.

For the HOG features we use the same parameters as
described in [9]. In addition to the 8x8 cells we extract HOG
at two coarser levels - 16x16 and 32x32. Depending on the

Figure 6. Computing skin-speci�c features. The skintone classi�er
is applied to the poselet activation patch (A) to obtain the skintone
probability mask (B). The poselet part soft mask (C), in thiscase,
a mask for the hands, is used to modulate the skintone mask and
the result is shown in (D). While for this poselet the positions of
the hands vary, as evidenced by the widespread hands mask, we
are still able to exclude most non-hand skin areas. The hand-skin
feature is the fraction of skin pixels in the modulated mask (D).
This feature is especially useful for determining if a person wears
short or long sleeves.

patch dimensions this feature is of size between 2124 and
4644. The color histogram is constructed with 10 bins in
each of the H, S and B dimensions.

For the skin-speci�c features we trained a skin classi-
�er, which is a GMM with 5 components �t from the LAB-
transformed patches of skin collected from various skin
tones and illuminations. We use three skin features: hands-
skin, legs-skin and neck-skin. Each feature is the fraction
of skin pixels in the corresponding part. Figure6 describes
how the feature is computed using the hand-skin feature of
an upper-body-torso poselet as an example.

7. Classi�ers

7.1 Poselet-level attribute classi�err i
j We train a separate

classi�er for each of the 1200 poselet typesi and for each
attributej . We used the 2003 training images for training
these classi�ers.

We construct a feature vector from all activations of
poseleti on the training set. The label of a given activation
is the label associated with the ground truth to which the
poselet activation is assigned. We discard any activations
on people that don't have a label for the given attribute.
Figure 2(right) shows instances of positive (top row) and
negative (bottom row) examples for the frontal face poselet
and the ”has-hat” attribute.

Some attributes have associated parts and poselets in
which these parts don't appear are excluded from training of
the attribute. For example, as shown on Figure4 it doesn't
make sense to use a legs poselet to train the ”has-hat” at-
tribute. To determine if a poselet covers a given part, we
check to see if its mask (Figure5) has presence of that
part. This spatial selection reduces the dimensionality of
our person-level attribute classi�ers and the opportunityfor
over�tting.

Our classi�ers are linear SVMs trained with weighted



examples. The weight of each training example is the prob-
ability of the corresponding poselet activationqi .

7.2 Person-level attribute classi�ersj The person-level at-
tribute classi�er for attributej combines all poselet-level
classi�ers for the given attribute. The feature vector has
one dimension for each poselet type. Our features are zero-
centered responses of the poselet-level attribute classi�ers,
see Equation2. Our classi�er is similar to a linear SVM, ex-
cept we impose positivity constraints on the weights1. Since
the input of the classi�er is trained on the training set, we
use the validation images to train the person-level attribute
classi�er.

7.3 Context-level attribute classi�er Sj There are strong
correlations among various attributes: long hair is corre-
lated with gender, short sleeves are correlated with short
pants, etc. Other attributes are especially helpful when di-
rect evidence for the attribute is non-salient. We use an
SVM with a quadratic kernel for each attribute. The fea-
tures are the scores of all person-level attribute classi�ers
for a given person. We trained the context-level classi�er
on the training + validation sets.

8. Experimental Results

The highest/lowest scoring examples for each attribute on
the test set are shown on Figure7 and the most confused
examples are on Figure8.

8.1. Performancevs. baselines

To validate the design choices of our approach we tested the
effect of disabling portions of our model. Table2, columns
7-9 show the effect of disabling the skin features and the
context classi�er. As expected, skin features are essential
for clothes-style attributes (the bottom �ve on Table2) and
without skin their mean AP drops from 63.18 to 55.10. The
other attributes, such as gender and hairstyle are largely un-
affected by skin. The context classi�ers help on seven of
the attributes and decrease performance on two, boosting
the overall mean AP from 61.5 to 65.2.

Our baseline method uses Canny-modulated Histogram
of Oriented Gradients [2] with Spatial Pyramid Matching
kernel [21] which is effective for image classi�cation in
Caltech-101 as well as gender classi�cation on MIT pedes-
trians [7]. The results of training it on the full bounds of
the person are in column 6 of Table2. We handily outper-
form SPM across all attributes with a mean AP of 65.18vs.
45.91 for the SPM. We believe this is partly due to the fact
that the generic spatial model used in the SPM is insuf�-
cient and the implicit pose-speci�c alignment provided by

1A negative weight would mean that the SVM takes the opposite of
the advice of the poselet-level classi�er, which could onlyhappen due to
over�tting so we prevent it explicitly.

Figure 7. The six highest and lowest scoring examples of each
attribute on our test set. Of the 108 examples, �ve are classi�ed
incorrectly and marked with an X in the upper right corner. Three
of them are women wearing hats misclassi�ed as men. The gender
attribute is the only one negatively affected by the contextclassi�er
and the effect applies only for the lowest recall mode, shownhere.

Figure 8. Examples of most confused attributes. Many of the most
confused males have long hair and the most confused females hide
their hair under a hat. Results are affected by incorrect ground
truth labels (has t-shirt, has-shorts), occlusion (has-jeans), and
confusion with another person (has-shorts, not has-long-pants).

Figure 9. To help with localization, we provide our baselines the
full bounds (left), as well as zoomed and aligned views of thehead,
upper body and lower body.

the poselets is necessary. Our examples have large degree
of articulation and a generic classi�er would suffer from lo-
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Figure 10. Precision-recall curves of the attribute classi�ers on the
test set. Our full result (column 9 in Table2) is shown in thick
green. Our performance without context classi�ers (column7) is
shown in red; the SPM using the optimal view per attribute (max
of columns 3-6) is shown in blue and the frequency of the label
(column 2) is the dashed black horizontal line.

calization errors, especially for location-sensitive attributes
such as has-glasses. To help SPM with localization we ex-
tracted higher resolution views of the people, zoomed on
the head, upper body and lower body (Figure9). Columns
3-5 on Table2 show the results of using an SPM trained
on each of the zoomed views. As expected, the head zoom
improves detection of gender, hairstyle, presence of glasses
and a hat. However, even if we used the best view for each
attribute, we would get a mean AP of 51.87, which, despite
the extra supervision, remains substantially lower than our
AP of 65.18.

8.2. Performance from different viewpoints

As the examples on Figure7 show, the classi�ers are most
con�dent for people facing the camera. To test the robust-
ness of our method to different viewpoints we partitioned
the test set into three partitions – frontal, pro�le and back-
facing people and we tested the performance for each view.
To automatically partition the data we made use of the key-
point annotations that come with our images. Speci�cally,
images for which both eyes are present are treated as frontal;
if only one eye is present the image is treated as a pro�le,
and if no eyes are present, and the left shoulder is to the
left of the right shoulder we assign the image to the back-
facing category. Approximately 61% of our test data con-
sists of frontal images, 18% is pro�le images and 11% is
back-facing people. Around 9% of the data did not fall into
any of these categories. In some cases this is due to missing
annotation data, and in other cases the head is not visible.
Table3 shows the average precision of the attributes on all

Attribute All Frontal Pro�le Back
is male 82.4 82.9 82.9 83.2

has long hair 72.5 81.3 31.3 47.2
has glasses 55.6 59.8 33.9 18.8

has hat 60.1 66.4 54.8 41.9
has long sleeves 74.2 76.1 70.6 75.1

has t-shirt 51.2 55.7 43.3 46.7
has long pants 90.3 89.9 92.9 94.2

has jeans 54.7 53.0 46.9 70.0
has shorts 45.5 47.8 48.6 45.3
Mean AP 65.18 68.11 56.12 58.05

Num. examples 4022 2449 736 459
Table 3. Average precision for the attributes using all testannota-
tions as well as using frontal-only, pro�le-only and back facing-
only ones. The has-glasses attribute is most affected by thehead
orientation, and it drops to chance level for the back-facing case.

the data and on each partition. As expected, performance is
highest for frontal examples, followed by back-facing and
then pro�le examples.

8.3. Optimal places to look for an attribute

It is not obvious exactly which part of the image is most
discriminative for a given attribute. Consider the attribute
has-long-hair. Clearly we should look at the face, but what
is the optimal zoom level and pose? What if the person
is in a pro�le or back-facing view? Our method automati-
cally determines the optimal location, scale and viewpoint
to look for evidence for a given attribute. This is a function
of both the frequency of the given pose in the training set
and the ease of discrimination given the pose. Speci�cally,
the person-level classi�er ranks each poselet type according
to its predictive power. Figure11shows the top �ve poselets
used for determining the gender, hair length and presence of
glasses. Since more than half of the people in our training
set are facing the camera, and frontal view is usually more
discriminative, the top poselets all come from frontal view.

8.4. Gender recognition performance

Comparison with other methods is challenging because
the vast majority of person-speci�c attribute classi�cation
methods operate on frontal faces only [19, 24, 25]. If we
applied our method on their datasets, our three-level hierar-
chy would reduce to a single frontal poselet and the com-
parison will reduce to the effectiveness of HOG features for
gender classi�cation, a problem that is interesting but not
directly relevant to our work2. In addition, other methods
use different attributes, with the exception of gender.

Fortunately we have access to the Cognitec face rec-
ognizer, which is the winner of FRVT 2002 and one of
the leading commercial face recognizers according to MBE

2Our skin features are only useful for attributes not visiblefrom the
frontal face



Attribute(1) Freq(2) Spatial Pyramid Match Our Method Cognitec(10)
Head(3) Lower(4) Upper(5) BBox(6) No ctxt(7) No skin(8) Full(9)

is male 59.3 74.9 63.9 71.3 68.1 82.9 82.5 82.4 75.0
has long hair 30.0 60.1 34.0 45.2 40.0 70.0 73.2 72.5
has glasses 22.0 33.4 22.6 25.5 25.9 48.9 56.1 55.6

has hat 16.6 53.0 24.3 32.3 35.3 53.7 60.3 60.1
has t-shirt 23.5 32.2 25.4 30.0 30.6 43.0 48.4 51.2

has long sleeves 49.0 53.4 52.1 56.6 58.0 74.3 66.3 74.2
has shorts 17.9 22.9 24.8 22.9 31.4 39.2 33.0 45.5
has jeans 33.8 38.5 38.5 34.6 39.5 53.3 42.8 54.7
long pants 74.7 79.9 80.4 76.9 84.3 87.8 85.0 90.3
Mean AP 36.31 49.81 40.66 43.94 45.91 61.46 60.84 65.18

Table 2. Average precision of baselines relative to our model. Freq is the label frequency. We trained separate SPM models on thehead
(Head), lower body (Lower), upper body (Upper) and full bounding box (BBox) as shown on Figure9. We tested our method by disabling
the skin features (No skin), the context classi�ers (No ctxt) and on the full system (Full ). Cognitecis the gender recognition results using
the Cognitec engine.

Figure 11. Our algorithm automatically determines the optimal
poses and viewpoints to look for evidence of a given attribute.
First row: The top poselets for is-male.Second row: The top
poselets for has-long-hair.Third row: The top poselets for has-
glasses. These three attributes require progressively higher zoom,
which is re�ected in the choice of poselets. The poselets aredrawn
by averaging their top ten training examples.

2010, the latest NIST test3. Cognitec can also report gen-
der. As with other methods, it operates on frontal faces only.
The Cognitec API does not allow for training of gender, so
we could not train it on our training set. For optimal per-
formance, we applied the engine on the zoomed head views
(Figure9b). Cognitec failed to �nd the face in 38.0% of the
images (not all of them have frontal faces) and it failed to
predict gender of another 20.0%. If we use mean score for
the missing predictions we get AP of 75.0% for Cognitec
vs. our AP of 82.4%. The precision-recall curve is shown
on Figure13. If we restrict the test to the faces for which
Cognitec predicts gender, we get AP of 83.72% for Cog-
nitec and 83.74% for our method, essentially equal, even
though we aid Cognitec by providing a zoomed centered
view of the head. Note that we use simple HOG features

3http://www.cognitec-systems.de/FaceVACS-Performance.23.0.html

Figure 12. The poselets that performed best (left) to worst (right)
for people (top row) and the computer algorithm (bottom).

and linear SVMs and Cognitec uses careful alignment and
advanced proprietary biometric analysis. We believe that
our method bene�ts from the power of combining many
view-dependent poselet classi�ers.

We don't have access to other leading methods, such
as [19], but we can give an upper bound to their perfor-
mance since they all require frontal faces. In our dataset
60.9% of the faces are frontal (i.e. have both eyes visible).
If other methods use a perfect face detector, perfect align-
ment and perfect recognition for frontal faces and perform
at chance level for other cases, their AP would be 60.9*1 +
39.1*0.5 = 80.5vs. our AP of 82.4.

8.5. Comparisons to human visual system

Are the cues used by humans similar to the ones exploited
by our system? To help answer this question we conducted
an experiment using 10 representative poselets chosen to
cover various parts of the body at various zoom levels. For
each poselet we picked 100 examples, 50 male and 50 fe-
male. We �ashed a random poselet example for an average
of 200ms followed by a random image and asked each of
the 8 subjects to immediately choose the gender of the ex-
ample. We then sorted the 10 poselets using their mean
AP averaged over all subjects, and we also sorted them ac-
cording to their AP of discriminating gender in our system.
The results are shown on Figure12. The �gure shows that
there is a strong correlation between poselets preferred by
humans and those preferred by our system.



Figure 13. Precision-recall curves on gender recognition using our
full method (AP=82.4), our method without context classi�ers
(AP=82.9) and Cognitec (AP=75.0).

Figure 14. Given a picture of a person our method can generatea
natural language description.

8.6. Describing people

We have a simple extension that takes the predicted at-
tributes and generates a natural language description of the
person (Figure14). If the con�dence is low, it skips an at-
tribute (or uses ”person” instead of ”man” or ”woman”).

9. Conclusion

We are the �rst to address an important but challenging
problem with many practical applications - attribute clas-
si�cation of people ”in the wild”. Our solution is simple
and effective. It is robust to partial occlusion, articulation
and camera view. It draws cues from any part of the body
at any scale and it leverages the power of alignment without
explicitly inferring the pose of the person. While we have
demonstrated the technique using nine attributes of people,
it trivially extends to other attributes and other visual cate-
gories. We provide a large dataset of 8035 people annotated
with 9 attributes, which we hope will inspire others to fol-
low with better methods.
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