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Abstract

We propose a method for recognizing attributes, such as
the gender, hair style and types of clothes of people under
large variation in viewpoint, pose, articulation and ocelu
sion typical of personal photo album images. Robust at-
tribute classi ers under such conditions must be invariant
to pose, but inferring the pose in itself is a challenginggpro
lem. We use a part-based approach based on poselets. Our
parts implicitly decompose the aspect (the pose and view-
point). We train attribute classi ers for each such aspect
and we combine them together in a discriminative model. ‘
We_propose a new dataset of 8000 people Wlth. annOtatedFigure 1. People can easily infer the gender based on thetface
attributes. Our method performs very well on this dataset, |,,i style, the body proportions and the types of clothesolust

signi cantly outperforming a baseline built on the spatial gender classi er should take into account all such availables.
pyramid match kernel method. On gender recognition we

outperform a commercial face recognition system.

1. Introduction

Humans have an impressive ability to reliably recognize
the gender of people under arbitrary viewpoint and articula
tion, even when presented with a cropped part of the image
(Figurel). Clearly we don't rely on the appearance of a = s = -
single body part; gender can be inferred from the hair style, Figure 2. The problem of determining the people wearing hats
body proportions, types of clothes and accessories. We us top) vs no hats (bottom) is dif cult in unconstrained setup (left)
different cues de[;ending on the pose and viewpoint, and thef we can detect and align parts from the same view (right) the

. . . ’ problem becomes much easier.
same is true for other attributes, such as the hair styls; pre
ence of glasses and types of clothes.

f

visual cues associated with the attribute "has glasses”, fo

. L_et us consider how we rr_ught build a system for clas- example, are very subtle and different for a person facing
sifying gender and other attributes. If we could somehow the camerass a person looking sideways. As we show on

isolate image patches corresponding to the same body Paaple 2, a generic classi er for has-glasses performs only

from the same viewpoint then attribute classi cation be- slightly better than chance when trained on the entire per-

comes much easier. If we are not aple to dete_ct and align theson, but works much better when trained on aligned frontal
parts well, however, the effect of nuisance variables, ssch faces

the pose, viewpoint and localization will affect the featur Localizing bod ts h is in itself hard
vector much more than the relevant signal (Fig2reThe ocallzing body parts, NOWEVEr, 1S 1 I1Sell a very har
problem, e.g. [3. Frontal face is an exception, which

This work was supported by Adobe Systems, Inc., Google, Intel is why virtually all State'Of'the'art gender recognitiop-a
Corporation, as well as ONR MURI N00014-10-10933 proaches rely on carefully aligned frontal faces.




We develop an approach to solve this problem for genderattributes, such as a head or a whé€l][ Recognition and
as well as for other attributes, such the hair style, presenc localization of low-level attributes in a generative frame
of glasses or hat, and the style of clothes. Speci cally, we work has also been proposed by Ferrari and Zissermdn [
decompose the image into a set of papisseletd4], each Joint learning of classes and attributes has been explered u
capturing a salient pattern corresponding to a given view- ing Multiple Instance Learning?[/] and latent SVMs 79.
point and local pose, such as the one shown in Figure Automated discovery of attributes from text and associated
(right). This decomposition allows us to combine evidence images has also been exploréd,[1, 28]. The key advan-

from different parts of the body at different scal@se ac- tage of our method is that our parts implicitly model the

tivations of different poselets give us a robust distributel pose and camera view, which we believe results in more
representation of a person from which attributes can powerful discrimination capabilities.

be inferred without explicitly localizing different body A second line of work has focused on attributes of peo-
parts. ple. Gender recognition methods using neural networks

Prior work on gender recognition has focused on high date back to the early 19908, [16]. Support vector ma-
resolution frontal faces or pedestrians and requires a facechines P4] and AdaBoost classi ers on Haar features]
detector and alignment modules. Not only do we not needhave been proposed for gender and race recognition. Kumar
such modules, our method gracefully deals with pro les, et al. propose using face attributes for the purpose of face
back-facing people or even when the face is occluded orrecognition [L9 as well as visual search.§]. Gallagher
at too low a resolution, because we leverage informationand Chen have explored inferring gender and age from vi-
at multiple scales and aspects. Even though we use stansual features combined with nameg$]. Gender, age and
dard HOG and color features, on the task of gender recogni-weight attributes have also been successfully extracted fr
tion we outperform a leading commercial face recognition 3D motion capture data’f]. These approaches generally
system that relies on proprietary biometric analysis. Fur- require careful alignment of the data, and most of them ap-
thermore, the same mechanism allows us to handle not jusply to frontal faces only. We leverage the full body under
gender but any other attribute. any articulation without the need for alignment.

We illustrate our approach on the task of determining  Inourwork we are inspired by poselets, which have been
nine attributes of people — is-male, has-hat, has-t-shirt,used effectively for recognition, segmentation and action
has-shorts, has-jeans, has-long-hair, has-glassefpigs-  classi cation of people §, 4, 23, 5]. These problems are
sleeves, has-long-pants. The training inputis a set ofé®ag similar to ours, because the articulation and camera views
in which the people of interest are speci ed via their visibl  are also latent parameters when recognizing and segmenting
bounds and the values of their attributes. We use a threepeople. Thus we can think of poselets as a general purpose
layer feed-forward network (Figur®. In the rst layer we engine for decomposing the viewpoint and pose from the
predict the attribute value conditioned on each poselet,typ appearance.
such as the gender given a frontal face. In the second layer
we combine the information from all such predictions (such 3. The Attributes of People Dataset
as the gender given the face, the legs and the full body) into - .

a single attribute classi cation. In the third layer we leve There are several eX|st|r_19 datasets of attrlbute_s of p_eople
age dependencies between different attributes, such as thBUt we did not nd any suitable for the context in which

fact that gender is correlated with the presence of long hair ?L:Irg"lzthot()j is use%. FaC?Tra;TBI uses 15000 fzces andf
Our second contribution is a new dataset for attribute 'Y" PO9Y: ut provides only URLs to images and many o

classi cation of people in unconstrained settings consist the images are no longer available. Other datasets, such as

ing of 8035 examples labelled with the nine attributes (Sec- Pulbl;ig [19]| ?nd the Labeled Faces in the Wilil] include
tion 3). Although attribute recognition of people has been only frontal faces.

studied for frontal facesl[f] and pedestrians], our dataset V\(/je pror]?o”s% etjneva dataset of E:]03_5 images, eac”h ceg—
is signi cantly harder; it exhibits a large variation in we tered at a full body of a person. The images are collecte

point, pose, occlusion and self-occlusion, close proximit from the H3D [] dataset and the PASCAL VOC 2010]

to other people, variable resolution, etc. (Figa)e Frammg and validation data}sets for.the person_categulty, b
instead of the low-resolution versions used in PASCAL,

2 Related Work we collected the full resolution equivalents on Flickr. For
each person we cropped the high resolution image around
Prior research on attributes has generally followed two that person, leaving suf cient background around the visi-
directions. One line of work has used attributes as an inter-ble bounds and scaled it so the distance between hips and
mediate representation layer with the goal of transfenlear shoulders is 200 pixels. For each such image we provide
ing as well as describing properties of objects),[17]. the visible bounds of the person in the center and a list of
Farhadiet al. propose a method for localizing part-based bounds of all other people in the background.



detected.

Step 2 For each poselet tydewe extract a feature vector

" from the image patch of the activation, as described in
Section6. The feature vector consists of HOG cells at three
scales, a color histogram and skin-mask features.

Step 3 For each poselet typeand each attribut¢ we
evaluate a classi elr]-i for attributej conditioned on the
poseleti. We call these th@oselet-level attribute classi-
ers. We use a linear SVM followed by a logistic

r= g '+ 1) (1)
wherewji andtj are the weight vector and the bias term of
the SVM. These classi ers attempt to determine the pres-
ence of an attribute from a given part of the person under a
given viewpoint, such as the has-hat classi er for a frontal
face shown on Figurg.

Figure 3. Fifty images drawn at random from our test set and
slightly cropped to the same aspect ratio. Each image i®oeht

at a target person. Our dataset is challenging as it hasavarg
ability of viewpoints, poses, and occlusions. In some caseple

are close to each other which makes identifying the correxstqn
challenging as well. To aid identi cation we provide the ibie
bounds of the target person, as well as the bounds of all pter

ple in the image.

Step 4 We zero-center the outputs of the poselet-level at-
tribute classi ers, modulate them by the poselet detection
probabilitiesq and we use them as an input to a second-
level classier for each attributg¢, called aperson-level
attribute classi er, whose goal is to combine the evidence
from all body parts. It emphasizes poselets from viewpoints

Attribute | True| Falsg| Attribute True| Falsg that are more frequent and more discriminative. Itis also a

is male 3395 2365 | long hair 1456 3361 linear classi er with a logistiay:

has hat 1096 5532 | glasses 1238 4083

has t-shirt | 1019 3350 | long sleeveg 3045 3099 ]' = qi(rji 0:5) (2)

has shorts| 477 | 2020Q/| long pants | 2020 760 B oT 0

has jeans | 771 | 1612 s = 9wy j+h) (3)
Table 1. Number of positive and negative labels for ourlattes.

Step 5 Finally, for each attribut¢, we evaluate a third-
We used Amazon Mechanical Turk to provide labels for level classi er which we call theontext-level attribute clas-
all attributes on all annotations by ve independentannota sier. Its feature vector is the scores of all person-level

tors [27]. A label was considered as ground truth if at least classi ers for all attributess; . This classi er exploits the

4 of the 5 annotators agreed on the value of the label. Wecorrelations between the attributes, such as gewslahe
discarded 501 annotations in which less than two attributespresence of a skirt, or short-sleewessshort-pants. We use
were speci ed as ground truths which left us with 8035 im- an SVM with quadratic kernel which we found empirically
ages. Tabld shows the distribution of labels. We split the to work best. We denote the score of this classi er wih
images into 2003 training, 2010 validation and 4022 test which is the output of our algorithm.

images by ensuring that no cropped images of different set

come from the same source image and by maintaining a bals. Training and Using Poselets

anced distribution of the H3D and PASCAL images in each
set. Figure3 shows 50 examples drawn at random from our
test set.

We use the method of Bourdetal. [3] to train 1200 pose-

lets using images from the training and validation sets. In-
stead of all poselets having the same aspect ratios, we used
four aspect ratios: 96x64, 64x64, 64x96 and 64x128 and
trained 300 poselets of each. For each poselet, during train
Our algorithm at test time is shown on Figutend can be  ing, we build a soft mask for the probability of each body
summarized as follows: component (such as hair, face, upper clothes, lower clpthes
Step 1 We detect the poselets on the test image and de-etc) at each location within the normalized poselet patch
termine which ones are true positives referring to the targe (Figure5) using body component annotations on the H3D

4. Algorithm Overview

person (Sectiob). Let d denote the probability of poselet
typei. d is the score of the poselet classi er transformed
by a logistic, with zero mean, or 0 if the poselet was not

dataset{].
We used the method of]to detect poselets in an image,
cluster them into person detection hypotheses and predict



Context-level LONG
attribute classit’ierss' IS MALE? PANTS? HAS HAT? |.
(Section 7.3) =

Person-level LONG
attribute classifiers Sj IS MALE? HAS HAT? |.
. J PANTS?
(Section 7.2) ="

Poselet-level
attribute classifiers rj'
(Section 7.1)

Features i

Section 6 . S - . .
{peciin.) Figure 6. Computing skin-speci c features. The skintorassl er

(;‘ii‘;‘;) q... I Ty ’ . is applied to the poselet activation patch (A) to obtain #ietene
: - - probability mask (B). The poselet part soft mask (C), in tase,
a mask for the hands, is used to modulate the skintone mask and

Figure 4. Overview of our algorithm at test time. Poseletsde- the result is shown in (D). While for this poselet the positiof
tected on the test image; detection scafesre computed and fea-  the hands vary, as evidenced by the widespread hands mask, we
tures ' are extracted. Poselet-level attribute classigrare eval- are still able to exclude most non-hand skin areas. The Bkind-
uated for every poselet activatiorand attributg (unless the at-  feature is the fraction of skin pixels in the modulated méa3k (
tribute is part-speci ¢ and the poselet does not cover thig pach This feature is especially useful for determining if a pers@ars

as the has-hat for three of the four shown poselets). A pdes@h short or long sleeves.

attribute classi ers; for every attribute combines the feedback of ) ) . ) )
all poselet-level classi ers. A context-level classi & forthe at-  Patch dimensions this feature is of size between 2124 and

tribute takes into account predictions of the other attebu This 4644. The color histogram is constructed with 10 bins in
picture uses 4 poselets and 3 attributes, but our systeml@98s  each of the H, S and B dimensions.
poselets and 9 attributes. For the skin-speci c features we trained a skin classi-
) _ er, which is a GMM with 5 components t from the LAB-
/ maty | transformed patches of skin collected from various skin
;A - 0. tones and illuminations. We use three skin features: hands-
%2 - ' skin, legs-skin and neck-skin. Each feature is the fraction
TR 05 Vo 'i of skin pixels in the corresponding part. Figuielescribes
Figure 5.Left:nI-ExampIes of a poseletRight: The poselet soft how the feature is computed using the hand-skin feature of
mask for the hair, face and upper clothes. an upper-body-torso poselet as an example.

the bounds of each person. We now need to decide which7. Classi ers

cluster of poselets refers to the person in the center of the7 1 Poselet-level attribute classi e We trai t
image and which ones refer to people in the background. ose'et-level allribute classi em; We train a separate
classi er for each of the 1200 poselet typieand for each

Our dataset contains many instances of people very close” "> . T -
to each other, so simply piycking the boun%ing box c)I/osest attributej . We used the 2003 training images for training
to the center of the image is not always correct. Instead itthese classi ers. -

is better to nd the optimally global assignment of all hy- We _construct a feature vector from all _actlvatpns_ of
potheses to all truth bounding boxes by preferring to assign.poselen on the tra!nmg Se.t' The label of a given act|yat|on
a bounding box to a given truth if its intersection over union Is the Iabell as_som_ated V.V'th the grou_nd truth to Wh'.Ch .the
is high, and by giving preference to hypotheses with higher poselet activation is assigned. We discard any activations

scores, which are less likely to be false positives. We formu on peopk_a that don't have a label for _the given attribute.
late this problem as nding the maximum ow in a bipartite Figure 2(right) shows instances of positive (top row) and

graph and we used the Hungarian algorithm to nd the op- negative (bottom row) examples for the frontal face poselet

timal matching. The result is a set of poselet activatigns an(;the hatf—.gatt attrr1|bute. iated ¢ d lets |
that refer to the foreground person. ome attributes have associated parts and poselets in

which these parts don't appear are excluded from training of
the attribute. For example, as shown on Figitedoesn't
make sense to use a legs poselet to train the "has-hat” at-
In this section we describe our poselet-level featurgs  tribute. To determine if a poselet covers a given part, we
which consist of HOG features, color histogram and skin- check to see if its mask (Figure has presence of that
speci ¢ features. part. This spatial selection reduces the dimensionality of
For the HOG features we use the same parameters asur person-level attribute classi ers and the opportufoty
described in{]. In addition to the 8x8 cells we extract HOG  over tting.
at two coarser levels - 16x16 and 32x32. Depending on the Our classi ers are linear SVMs trained with weighted

6. Poselet-Level Features'



examples. The weight of each training example is the prob-

ability of the corresponding poselet activatign

7.2 Person-level attribute classi ers; The person-level at-
tribute classi er for attributgg combines all poselet-level
classi ers for the given attribute. The feature vector has

one dimension for each poselet type. Our features are zero-

centered responses of the poselet-level attribute claissi
see Equatio@. Our classi er is similar to a linear SVM, ex-
cept we impose positivity constraints on the weigh&ince
the input of the classi er is trained on the training set, we
use the validation images to train the person-level attgibu
classier.

7.3 Context-level attribute classi er S; There are strong

correlations among various attributes: long hair is corre-

lated with gender, short sleeves are correlated with short

pants, etc. Other attributes are especially helpful when di

rect evidence for the attribute is non-salient. We use an

SVM with a quadratic kernel for each attribute. The fea-
tures are the scores of all person-level attribute classi e
for a given person. We trained the context-level classi er
on the training + validation sets.

8. Experimental Results

Figure 7. The six highest and lowest scoring examples of each
attribute on our test set. Of the 108 examples, ve are cledsi

The highest/lowest scoring examples for each attribute onincorrectly and marked with an X in the upper right cornerrekh

the test set are shown on Figufeand the most confused
examples are on Figuie

8.1. Performancevs baselines

of them are women wearing hats misclassi ed as men. The gende
attribute is the only one negatively affected by the contéadsi er
and the effect applies only for the lowest recall mode, shbene.

To validate the design choices of our approach we tested the

effect of disabling portions of our model. Talilecolumns

7-9 show the effect of disabling the skin features and the
context classi er. As expected, skin features are esdentia

for clothes-style attributes (the bottom ve on Taldeand

without skin their mean AP drops from 63.18 to 55.10. The
other attributes, such as gender and hairstyle are largely u
affected by skin. The context classi ers help on seven of

rrest confused “ls-male” rost confused “het has-long pants”

most confused “hasjeans”
most confused “net is-male”

mest confused “has-t-shirt” most confused “has-shorts”
Figure 8. Examples of most confused attributes. Many of thetm

the attributes and decrease performance on two, boostingonfused males have long hair and the most confused fenidkes h

the overall mean AP from 61.5 to 65.2.

their hair under a hat. Results are affected by incorrecamgto

Our baseline method uses Canny-modulated Histogramtruth labels (has t-shirt, has-shorts), occlusion (hasgg and

of Oriented Gradients?] with Spatial Pyramid Matching
kernel 21] which is effective for image classi cation in

Caltech-101 as well as gender classi cation on MIT pedes-

trians [7/]. The results of training it on the full bounds of
the person are in column 6 of Takite We handily outper-
form SPM across all attributes with a mean AP of 65/48
45.91 for the SPM. We believe this is partly due to the fact
that the generic spatial model used in the SPM is insuf -
cient and the implicit pose-speci ¢ alignment provided by

1A negative weight would mean that the SVM takes the oppodite o
the advice of the poselet-level classi er, which could ohbppen due to
over tting so we prevent it explicitly.

confusion with another person (has-shorts, not has-l@amgs).
T — Ay

. :
Figure 9. To help with localization, we provide our baseditiee

full bounds (left), as well as zoomed and aligned views ofiad,
upper body and lower body.

the poselets is necessary. Our examples have large degree
of articulation and a generic classi er would suffer from lo



is_male has_long_hair has_glasses Attribute All | Frontal| Prole | Back

! ! ! is male 824 | 829 82.9 | 83.2
05% , . has long hair | 72.5 | 81.3 | 31.3 | 47.2
___________________ has glasses | 55.6 | 59.8 | 33.9 | 18.8
0 0 0 has hat 60.1 | 66.4 54.8 | 41.9
° o8 e o8 e e has long sleeves 74.2 | 76.1 | 70.6 | 75.1
) has_hat 1has_longj_sleeves ) has_t-shirt has t-shirt 51.2 557 433 | 46.7
has long pants| 90.3 | 89.9 929 | 94.2
05 0.5p = = = = 0.5 has jeans 54.7 53.0 46.9 70.0
------------------- has shorts 455 | 47.8 48.6 | 45.3
% 0.5 1 % 0.5 1 % 0.5 1 Mean AP 65.18| 68.11 | 56.12 | 58.05
has_long_pants has_jeans has_shorts Num. exampleg 4022 | 2449 736 459
! ! ! Table 3. Average precision for the attributes using all éestota-
""""" tions as well as using frontal-only, pro le-only and baclcifag-
0% oSt TE% ________ 08 only ones. The has-glasses attribute is most affected biethd
""""" orientation, and it drops to chance level for the back-fadase.

[9) 0 0
0 0.5 1 0 0.5 1 0 0.5 1

Figure 10. Precision-recall curves of the attribute classion the the data and on each partition. As expected, performance is

test set. Our full result (column 9 in Tabfg is shown in thick pgpest for frontal examples, followed by back-facing and
green. Our performance without context classi ers (coluriiris then pro le examples.

shown in red; the SPM using the optimal view per attributema

of columns 3-6) is shown in blue and the frequency of the label g 3 Optimal places to look for an attribute
(column 2) is the dashed black horizontal line. o

It is not obvious exactly which part of the image is most
calization errors, especially for location-sensitiveiatites ~ discriminative for a given attribute. Consider the atttéou
such as has-glasses. To help SPM with localization we ex-has-long-hair. Clearly we should look at the face, but what
tracted higher resolution views of the people, zoomed onis the optimal zoom level and pose? What if the person
the head, upper body and lower body (Fig@ye Columns is in a pro le or back-facing view? Our method automati-
3-5 on Table2 show the results of using an SPM trained cally determines the optimal location, scale and viewpoint
on each of the zoomed views. As expected, the head zoonto look for evidence for a given attribute. This is a function
improves detection of gender, hairstyle, presence of ggass Of both the frequency of the given pose in the training set
and a hat. However, even if we used the best view for eachand the ease of discrimination given the pose. Speci cally,
attribute, we would get a mean AP of 51.87, which, despite the person-level classi er ranks each poselet type acogrdi
the extra supervision, remains substantially lower than ou to its predictive power. Figurelshows the top ve poselets

AP of 65.18. used for determining the gender, hair length and presence of
glasses. Since more than half of the people in our training
8.2. Performance from different viewpoints set are facing the camera, and frontal view is usually more

) ) discriminative, the top poselets all come from frontal view
As the examples on Figuréshow, the classi ers are most

con dent for people facing the camera. To test the robust- 8.4. Gender recognition performance

ness of our method to different viewpoints we partitioned . ) . :

the test set into three partitions — frontal, pro le and back Comparlson. W'th other methodg IS challenglng .bec.ause

facing people and we tested the performance for each view.the vast majority of person-speci c attribute classi ai

To automatically partition the data we made use of the key- methods operate on frontql faces onlys[24, 25). If we.
applied our method on their datasets, our three-level hiera

oint annotations that come with our images. Speci cally, .
P 9 P y hy would reduce to a single frontal poselet and the com-

images for which both eyes are present are treated as fronta® Y. . .
if ongly one eye is prese);]t the ir?nage is treated as a pﬁ:o le. Parison will reduce to the effectiveness of HOG features for

and if no eyes are present, and the left shoulder is to thegender classi cation, a problem that is interesting but not

left of the right shoulder we assign the image to the back- d're((:jt_lf)_/r relel/a?tt _tg) ?ur W?{ﬁ(thm addm?_n, ot?er rr;ethods
facing category. Approximately 61% of our test data con- UST: ireren Ia f uhes, Wi e exceE '02 orgen (:r.
sists of frontal images, 18% is pro le images and 11% is orunately we have access to the Cognitec lace rec-

back-facing people. Around 9% of the data did not fall into ogn;zeg_ which is the \IA;mner of FRVT 2002 zzr_nd on?\ﬂng
any of these categories. In some cases this is due to missin&Ie eading commercial face recognizers according to
annotation data, and in other cases the head is not visible. 2oy skin features are only useful for attributes not visifstam the
Table3 shows the average precision of the attributes on all frontal face




Attribute(1) Freq(2) Spatial Pyramid Match Our Method Cognitec(10)

Head(3)| Lower(4) | Upper(5)| BBox(6) || No ctxt(7) | No skin(8)| Full(9)
is male 59.3 74.9 63.9 71.3 68.1 82.9 82.5 82.4 75.0

has long hair 30.0 60.1 34.0 45.2 40.0 70.0 73.2 72.5
has glasses 22.0 33.4 22.6 25.5 25.9 48.9 56.1 55.6
has hat 16.6 53.0 24.3 32.3 35.3 53.7 60.3 60.1
has t-shirt 23.5 32.2 25.4 30.0 30.6 43.0 48.4 51.2
has long sleeves 49.0 53.4 52.1 56.6 58.0 74.3 66.3 74.2
has shorts 17.9 22.9 24.8 22.9 31.4 39.2 33.0 45.5
has jeans 33.8 38.5 38.5 34.6 39.5 53.3 42.8 54.7
long pants 74.7 79.9 80.4 76.9 84.3 87.8 85.0 90.3
Mean AP 36.31 | 49.81 40.66 43.94 45.91 61.46 60.84 65.18

Table 2. Average precision of baselines relative to our oéeeq is the label frequency. We trained separate SPM models ohethe
(Head), lower body Lower), upper body pper) and full bounding boxBBox) as shown on Figurg. We tested our method by disabling
the skin featuresNo skin), the context classi ersNo ctxt) and on the full systenHull). Cognitecis the gender recognition results using
the Cognitec engine.

Figure 12. The poselets that performed best (left) to woighi)
for people (top row) and the computer algorithm (bottom).

and linear SVMs and Cognitec uses careful alignment and
advanced proprietary biometric analysis. We believe that
our method bene ts from the power of combining many
view-dependent poselet classi ers.

Figure 11. Our algorithm automatically determines the ropti We don't have access to other leading methods, such

poses and viewpoints to look for evidence of a given attebut @S [LF], but we can give an upper bound to their perfor-
First row: The top pose|ets for is-maleSecond row: The top mance since they all requ”e frontal faces. In our dataset

poselets for has-long-haiiThird row: The top poselets for has- 60.9% of the faces are frontal (i.e. have both eyes visible).

glasses. These three attributes require progressivelhehigoom, If other methods use a perfect face detector, perfect align-
which is re ected in the choice of poselets. The poseletsleae/n ment and perfect recognition for frontal faces and perform
by averaging their top ten training examples. at chance level for other cases, their AP would be 60.9*1 +

. 39.1*0.5 =80.5vs our AP of 82.4.
2010, the latest NIST test Cognitec can also report gen-

der. As with other methods, it operates on frontal faces.only 8 5. Comparisons to human visual system
The Cognitec API does not allow for training of gender, so
we could not train it on our training set. For optimal per- Are the cues used by humans similar to the ones exploited
formance, we applied the engine on the zoomed head viewdy our system? To help answer this question we conducted
(Figure9b). Cognitec failed to nd the face in 38.0% of the an experiment using 10 representative poselets chosen to
images (not all of them have frontal faces) and it failed to cover various parts of the body at various zoom levels. For
predict gender of another 20.0%. If we use mean score foreach poselet we picked 100 examples, 50 male and 50 fe-
the missing predictions we get AP of 75.0% for Cognitec male. We ashed a random poselet example for an average
vs our AP of 82.4%. The precision-recall curve is shown of 200ms followed by a random image and asked each of
on Figurel3. If we restrict the test to the faces for which the 8 subjects to immediately choose the gender of the ex-
Cognitec predicts gender, we get AP of 83.72% for Cog- ample. We then sorted the 10 poselets using their mean
nitec and 83.74% for our method, essentially equal, evenAP averaged over all subjects, and we also sorted them ac-
though we aid Cognitec by providing a zoomed centered cording to their AP of discriminating gender in our system.
view of the head. Note that we use simple HOG features The results are shown on Figut&. The gure shows that
there is a strong correlation between poselets preferred by
3http://www.cognitec-systems.de/FaceVACS-Performazg6.html humans and those preferred by our system.
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Figure 13. Precision-recall curves on gender recognitgngiour
full method (AP=82.4), our method without context classse
(AP=82.9) and Cognitec (AP=75.0).
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Figure 14. Given a picture of a person our method can genarate (6]

natural language description. [17]

8.6. Describing people
[18]
We have a simple extension that takes the predicted at-
tributes and generates a natural language descriptioreof th [19]
person (Figureld). If the con dence is low, it skips an at- [20]
tribute (or uses "person” instead of "man” or "woman”).

9. Conclusion

We are the rst to address an important but challenging
problem with many practical applications - attribute clas-
si cation of people "in the wild”. Our solution is simple
and effective. It is robust to partial occlusion, articidat
and camera view. It draws cues from any part of the body
at any scale and it leverages the power of alignment without[?*
explicitly inferring the pose of the person. While we have 25
demonstrated the technique using nine attributes of people

it trivially extends to other attributes and other visuateca
gories. We provide a large dataset of 8035 people annotated?®!
with 9 attributes, which we hope will inspire others to fol-

(23]

low with better methods. (271
[28]
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