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Abstract

We present a distributed representation of pose and ap-
pearance of people called the “poselet activation vector”.
First we show that this representation can be used to esti-
mate the pose of people de�ned by the 3D orientations of
the head and torso in the challenging PASCAL VOC2010
person detection dataset. Our method is robust to clutter,
aspect and viewpoint variation and works even when body
parts like faces and limbs are occluded or hard to localize.
We combine this representation with other sources of infor-
mation like interaction with objects and other people in the
image and use it for action recognition. We report compet-
itive results on the PASCAL VOC2010static image action
classi�cation challenge.

1. Introduction

We can say a fair amount about the people depicted in
Figure1 – the orientations of their heads, torsos and other
body parts with respect to the camera, whether they are sit-
ting, standing, running or riding horses, their interactions
with particular objects, etc. And clearly we can do it from
single image, video is helpful but not essential, and we do
not need to see the whole person to make these inferences.

A classical way to approach the problem of action recog-
nition in still images is to recover the underlying stick �g-
ure [9, 17]. This could be parameterized by the positions
of various joints, or equivalently various body parts. In
computer graphics this approach has been a resounding suc-
cess in the form of various techniques for “motion capture”.
By placing appropriate markers on joints, and using multi-
ple cameras or range sensing devices, the entire kinematic
structure of the human body can be detected, localized and
tracked over time [23]. But when all we have is a single
image of a person, or a part of a person, not necessarily at
high resolution, in a variety of clothing, the task is much
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Figure 1. Pose and action is revealed from all these patches.

harder. Research on pictorial structures [9, 17] and other
techniques [19] for constructing consistent assemblies of
body parts has made considerable progress, but this is very
far from being a solved problem.

In this paper we take the position that recovering the pre-
cise geometric locations of various body parts is trying to
solve a harder intermediate problem than necessary for our
purposes. We advocate instead the use of a representation,
the “poselet activation vector”, which implicitly represents
the con�guration of the underlying stick �gure, and infer-
ences such as head and torso pose, action classi�cation, can
be made directly from the poselet activation vector.

We can motivate this by a simpler example. Consider
the problem of inferring the pose of a face with respect to
camera. One way of doing it is as an explicit 2D to 3D ge-
ometric problem by �nding the locations of the midpoints
of the eyes, nose etc, and solve for the pose. Alternatively
one can consider the outputs of various face detectors - one
tuned to frontal faces, another to three-quarter view faces,
another to faces in pro�le. The responses of these detectors
provide a distributed representation of the pose of the face,
and one can use an “activation vector” of these responses
as the input to a regression engine to estimate pose. In bi-
ological vision, strategies such as these are common place.
Color is represented by a response vector corresponding to
three cone types, line orientation by the responses of vari-
ous simple cells in V1, and indeed neurons have been found
in macaque inferotemporal cortex which show differential
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responses to faces at different orientations, suggesting adis-
tributed representation there as well.

In order to generalize this strategy to the human body, we
must deal with its articulated nature. Different parts can be
in different con�gurations, and occlusion can result in only
some parts being visible. In addition one needs to deal with
the variation in aspect due to changes in camera direction.
Poselets, introduced by Bourdev and Malik [4] and further
developed in Bourdevet al. [3] for person detection and
segmentation provide a natural framework.

We show that the poselet activation vector, which repre-
sents the degree to with each poselet is present in the image
of a person, provides a distributed representation of pose
and appearance. We use it to estimate the 3D orientation
of the head and torso of people in the challenging PASCAL
VOC 2010person detection dataset [7]. This dataset is sig-
ni�cantly hard where the current state of the art methods
achieve detection performance only about50%. Our ap-
proach achieves an error of26:3� across views for the head
yaw and matches the “human error rate” when the person is
front facing.

Action recognition from still images can bene�t from
this representation as well. Motion and other temporal cues
which have been used for generic action recognition from
videos [20, 22, 11, 6], are missing in still images which
makes it a dif�cult problem. In this setting the pose and ap-
pearance of the person provides valuable cues for inferring
the action. For example as seen in Figure2, certain actions
like walking and running are associated with speci�c poses
while people riding bikes and horses have both a distinctive
pose and appearance.

Actions often involve interactions with other objects
and one can model these interactions to disambiguate ac-
tions [26]. In addition context based on actions of other
agents in the scene can provide valuable cues as well [13].
For example, certain activities like marathon events or mu-
sicians playing in a concert, are group activities and it is
likely that everyone in the scene is performing the same ac-
tion.

The rest of the paper is structured as follows: we begin
with a review of work in the area of action recognition and
pose estimation in Section2. In Section3, we describe how
we construct the poselet activation vector for a given person
in an image. We present experiments on 3D pose estima-
tion of people in the PASCAL VOC2010people detection
dataset in Section4. Finally we report results on the re-
cently introduced PASCAL VOC2010action classi�cation
dataset in Section5 and conclude in Section6.

2. Previous Work

The current work draws from the literature of two active
areas in the computer vision – pose estimation and action
recognition. We brie�y describe some without any hope of

Figure 2. Pose and appearance variation across actions.

doing justice to either of the areas.

Human pose estimation from still images. Pictorial
structures based algorithms like that of [9, 19, 17, 10] deal
with the articulated nature of humans by �nding body parts
like limbs and torsos and constructing the overall pose us-
ing the prior knowledge of human body structure. Though
completely general, these methods suffer when the parts
are hard to detect in images. Another class of methods
work by assuming that the humans appear in backgrounds
which are easy to remove, and in such cases the contour
carries enough information about the pose. This includes
the shape-context based matching of silhouettes in the work
of [16], the work of [21] where approximate nearest neigh-
bor techniques are used to estimate the pose using a large
dataset of annotated images.

A common drawback of all these approaches is that they
treat the task of pose estimation and detection separately.
Pictorial structure based models often assume a rough lo-
calization of the person and fail when there is signi�cant
occlusion or clutter. In such a two-stage pipeline it would
be helpful if the detector provides a rough estimate of the
pose to guide the next step. We also believe that the detec-
tion algorithms need to have a crude treatment of pose in
them. This is re�ected by the fact that some of the best peo-
ple detectors on the PASCAL VOC challenge namely the
detector of Felzenszwalbet al. [8] and Bourdevet al. [3] are
part based detectors which have some treatment of pose.
Action Recognition from video. Actions in this setting
are described by some representation of its spatio-temporal
signature. This includes the work of Blanket al. [2] and
Shechtman and Irani [22], who model actions as space-time
volumes and classi�cation is based on similarity of these
volumes. Schuldtet al. [20] and Laptev [14] generalize the
notion of interest points from images to space-time volumes
and use it to represent actions. Actions as motion templates
has been explored in the work of Efroset al. [6], where
actions are described as series of templates of optical �ow.
Other methods like [18, 27] are based on representations on
the 2D motion tracks of a set of features over time.
Action recognition from still images. Humans have a re-
markable ability to infer actions from a still image as shown
in Figure1. In this setting it is natural to build representa-
tions on top the output of a pose estimation algorithm. Due
to the drawbacks of the current pose estimation algorithms,
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Figure 3.Our distributed representation of pose using poselets.Each image is shown with the top9 active poselets consistent with the
person in the image (shown by their average training examples). Occlusion, variations in clothing, clutter, lack of resolution in images
makes the pose estimation a hard problem and our representation is robust to these.

several approaches build pose representations that are more
robust – Ikizler and Pinar [12] represent pose using a “his-
togram of oriented rectangle” feature which is the proba-
bility distribution of the part locations and orientationsesti-
mated using part detectors. Thurau and Hlavac [24] repre-
sent pose as a histogram of pose primitives. These methods
inherit most if not all of the problems of pose estimation.

The closest in spirit to our approach is the work of
Yang et al. [25], who also use a representation based on
poselets to infer actions. Pose represented as a con�gura-
tion of body part locations is expressed as a latent variable
which is used for action recognition. Training and inference
in the model amount to reasoning over these latent poses
which are themselves inferred using a tree like prior over
body parts and poselet detections. Unlike their approach
we don't have an explicit representation of the pose and use
the “poselet activation vector” itself as a distributed rep-
resentation. In addition, our poselets encode information
from multiple scales and are not restricted to parts like legs
and arms. In our experiments we found that such an over-
complete representation greatly improves the robustness of
the system. We show that linear classi�ers trained on top of
the poselet activation vector can be used for both 3D pose
estimation of people in the challenging PASCAL VOC2010
dataset and static image action recognition demonstrating
the effectiveness of our representation.

3. Poselet Activation Vector

Our framework is built on top of poselets [4, 3] which
are body part detectors trained from annotated data of joint
locations of people in images. The annotations are used to
�nd patches similar in pose space to a given con�guration
of joints. A poselet is a SVM classi�er trained to recog-
nize such patches. Along with the appearance model one
can also obtain the distributions of these joints and person
bounding boxes conditioned on each poselet from the anno-
tations. Figure10shows some example poselets.

Given the bounding box of a person in an image, our
representation, called the poselet activation vector, consists
of poselets that are consistent with the bounding box. The
vector has an entry for each poselet type which re�ects the

degree to which the poselet type is active in that person.
This provides a distributed representation of the high di-
mensional non-linear pose space of humans as shown in
Figure3. Notice that the pose and appearance information
is encoded at multiple scales. For example, we could have
a part which indicates just the head or just the torso or the
full pedestrian. We use this representation for both action
recognition and 3D pose estimation from still images.

4. 3D Pose Estimation from Still Images

First we quantitatively evaluate the power of the pose-
let activation vector representation for estimating pose.Our
task is to estimate the 3D pose of the head and torso given
the bounding box of the person in the image. Current ap-
proaches for pose estimation based on variants of pictorial
structures are quite ill suited for this task as they do not
distinguish between a front facing and back facing person.
Some techniques can estimate the 3D pose of the head by
�rst detecting �ducial points and �tting it to a 3D model
of the head, or by regressing the pose from the responses
of face detectors trained to detect faces at different orien-
tations [15]. These methods are not applicable when the
face itself is occluded or when the image is at too low a
resolution for a face detector, a common occurrence in our
dataset.

The pose/aspect of the person in encoded at multiple
scales and often one can roughly guess the 3D pose of the
person from various parts of the person as seen in Figure1
and our representation based on poselets are an effective
way to use this information. Our results show that we are
able to estimate the pose quite well for both pro�le and back
facing persons.

A Dataset of 3D Pose Annotations. Since we wanted to
study the problem of pose estimation in a challenging set-
ting, we collected images of people from thevalidationsub-
set of PASCAL VOC2010dataset not marked as dif�cult.
We asked the users on Amazon Mechanical Turk [1], to es-
timate the rotations around X,Y and Z of the head and torso
by adjusting the pose of two gauge �gures as seen in Fig-
ure4(a). We manually veri�ed the results and threw away
the images where there was high disagreement between the
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annotators. These typically turned out to be images of low
resolution or severe occlusion.

Our dataset has very few examples where the rotation
along X and Z axes is high, as is typical of consumer pho-
tographs, hence we removed images which have rotations
along X and Z> 30� and focus on estimating the rotation
around Y (Yaw) only. In the end we have1620people anno-
tations that along with their re�ections result in3240exam-
ples. The distribution of the yaw across the dataset is shown
in Figure4(c, d, e).

Figure4(b) shows the human error in estimating the yaw
across views of the head and torso. This is measured as the
average of standard deviation of the annotations on a single
image in the view range. The error is small for people in
canonical views, i.e. when the person is facing front, back,
left or right, whereas it is high when the person in facing
somewhere in between. Overall the annotators are fairly
consistent with one another with a median error of6:66�

for the head and7:07� for the torso across views.

Experiments. Similar to [3], we train 1200 poselets on
the PASCAL train2010+ H3D trainval dataset. Instead of
all poselets having the same aspect ratio, we used four as-
pect ratios:96 � 64, 64 � 64, 64 � 96 and128� 64 and
trained300poselets of each. In addition we �t a model of
bounding box prediction for each poselet. We construct the
poselet activation vector by considering all poselet detec-
tions whose predicted bounding box overlaps the bounding
box of the person, de�ned by the intersection over union
> 0:20 and adding up the detection scores for each poselet
type. We use this1200dimensional vector to estimate the
pose of the person.

We estimate the pose of the head and torso separately.
We discretize the yaw2 [� 180� ; 180� ] into 8 discrete bins
and train one-vs-all linear classi�ers for predicting the dis-
crete label. The angle is obtained by parabolic interpolation
using the highest predicted bin and its two adjacent neigh-
bors. We optimize our parameters on one split of the data
and report results using10 fold cross validation. We split
the training and test set equally ensuring both the image and
its re�ection are both either in the training or the test set.

Figure5(a, b) show the confusion matrix for the task of
predicting the discrete view, one of front, left, right and
back, for the head and torso. The average diagonal ac-
curacy is62:1% for the head and61:71% for the torso.
The median errors in predicting the real valued view are
shown in Figure5(c). We report results by averaging the
error for predicting view across8 discrete views. Since
the dataset is biased towards frontal views, this error met-
ric gives us a better idea of the accuracy of the method.
Across all views the error is about26:3� and23:4� for the
head and torso respectively, while across the front views,
i.e. yaw2 [� 90� ; 90� ], the error is lower:20:0� and19:6�

respectively. In particular, the error when the person is fac-
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Figure 5. (a, b) Average confusion matrix over10-fold cross vali-
dation, for predicting four viewsleft, right, front andback. The
mean diagonal accuracy is62:10% and 61:71% for predicting
the head and the torso respectively. (c) Error in predictingthe
yaw averaged over8 discrete views using10-fold cross validation.
Across all views the error is about26:3� and23:4� for the head
and torso respectively, while across the front views, i.e. yaw 2
[� 90� ; 90� ], the error is lower20:0� ; 19:6� . In particular the er-
ror when the person is facing front, i.e. yaw2 [� 22:5� ; 22:5� ]
matches the human error rate.

ing front, i.e. yaw2 [� 22:5� ; 22:5� ] matches the human
error rate. Our method is able to recognize the pose of back
facing people, i.e. yaw2 [157:5� ; � 157:5� ], a 45� range
around the back facing view, with an error of about20� error
for the head and torso. Approaches based on face detection
would fail but our representation bene�ts from information
at multiple scales like the overall shape of the person, as
shown in Figure6. The error is smaller when the person is
facing exactly left, right, front and back while it is higher
when the person is facing somewhere in between, qualita-
tively similar to humans.

At roughly25� error across views, our method is signif-
icantly better than the baseline error of90� for the method
that always predicts the view as frontal (It gets0� error
for frontal view, but180� error for back view). Figure7
shows some example images in our dataset with the esti-
mated pose. We believe this is a good result on this dif�cult
dataset demonstrating the effectiveness of our representa-
tion for coarse 3D pose estimation.

5. Static Action Classi�cation

In this section we present our method for action clas-
si�cation and report results on the newly introduced PAS-
CAL VOC 2010action classi�cation benchmark. The in-
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Figure 4. (a) Interface for annotating the 3D pose on Amazon Mechanical Turk. (b) Human error rate across view for estimating the pose
of the head and torso. (c, d, e) Distribution of the yaw of head, torso and torso relative to the head, on our 3D pose dataset.

Figure 7. Left to right are examples images in our 3D pose dataset of increasing prediction error. Under each image the plot shows the true
yaw for the head (left) and torso (right) in green and the predicted yaw in red. We are able to estimate the pose even when theface, limbs
and other body parts are hard to detect.

yaw = � 180�

yaw = � 90�

yaw = 0 �

yaw = +90 �

Figure 6.Poselets with the highest weights for discrete view
classi�cation of the head. Note that information from multiple
scales is used to infer the view. When the person is back-facing,
i.e. yaw = � 180� , poselets corresponding to pedestrians and
upper-body are selected where as for the frontal view face poselets
are selected.

put is a set of bounding boxes on images and the task is
to score each of these with respect to nine action cate-
gories namely :phoning, playinginstrument, reading, rid-
ingbike, ridinghorse, running, takingphoto, usingcomputer
andwalking. Figure2 shows examples from various action
categories.

Action speci�c poselets. There are608training examples
for all the action categories. To train poselet models we �rst
annotate each person with 2D joint locations on Amazon
Mechanical Turk. Five independent annotators were asked
to annotate every image and the results were averaged with
some outlier rejection. Similar to the approach of [3] we
randomly sample windows of various aspect ratios and use
the joint locations to �nd training examples each poselet.

Figure 8 shows that pose alone cannot distinguish be-
tween actions and the appearance information is compli-
mentary. For example we would like to learn that people
riding bikes and horses often wear helmets, runners often
wear shorts, or that people taking pictures have their faces
occluded by a camera.To model this, we learn action spe-
ci�c appearance by restricting the training examples of a
poselet to belong to the same action category.

Many poselets like a “face” poselet may not discriminate
between actions.The idea illustrated in Figure9, is win-
dows that capture salient pose speci�c to certain actions
are likely to be useful for action discrimination. We mea-
sure “discriminativeness” by the number of within class ex-
amples of the “seed” windows in the topk = 50 nearest
examples for the poselet. The idea is that if a pose is dis-
criminative then there will be many examples of that poselet
from within the same class. Combined with the earlier step
this gives us a way to select poselets which detect salient
pose and appearance for actions as shown in Algorithm1.
Appearance models are based on HOG [5] and linear SVM.
We learn1200 action speci�c poselets. Figure10 shows
representative poselets from four action categories.
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phoning running walking ridinghorse
Figure 10. Example poselets shown by their top5 training examples for various action categories. These capture both the pose and
appearance variation across the action categories.

Algorithm 1 Action speci�c poselet selection.
Require: 2D keypoint/action labels on training images.

1: for i = 1 to n do
2: Pick a random seed window and �nd the nearest ex-

amples in con�guration space based on the algorithm
of [3].

3: Compute the number of within class examples in the
k = 50 nearest examples.

4: end for
5: Select the topm seed windows which have the highest

number within class examples.
6: For each selected window, restrict the training exam-

ples to within the class and learn an appearance model
based on HOG and linear SVM.

Remarks:
� Steps1 � 5 learn action speci�c pose, while step6 learns

action speci�c appearance.
� We ensure diversity by running steps1� 6 in parallel. We set

m = 60; n = 600 across20 nodes to learn1200poselets.

seed all examples within class examples
Figure 8. The middle image shows the nearest examples matching
the seed using the pose alone, while the image on right shows the
top examples within thetakingphotocategory. This allows us to
learn appearance and pose speci�c to that action.

Poselet Activation Vector. The action poselets are run
in a scanning window manner and we collect poselet de-
tections whose predicted bounds overlap the given person
bounds, de�ned by the intersection over union of the area
> 0:15. Thei 'th entry of the poselet activation vector is the
sum of the scores of all such detections of poselet typei .

Spatial Model of Object Interaction. Interaction with
other objects often provides useful cues for disambiguat-
ing actions [26]. For example, images of people riding

seed Top36 training examples

seed Top36 training examples

Figure 9. The top row shows a seed window that captures a salient
pose for thetakingphotocategory. The36 nearest examples in
con�guration space for the top seed window has7 examples from
thetakingphotocategory while the bottom seed has only2.

horses have the person and the horse in certain spatial con-
�gurations. We model the interaction with four object cat-
egories :horse, motorbike, bicycleandtvmonitor. We learn
a mixture model of the relative spatial location between the
person bounding box and the object bounding box in the im-
age as shown in Figure11. For detecting these objects we
use the detector based on poselets trained on these object
categories presented in the PASCAL VOC 2010 object de-
tection challenge. For each object type we �t a two compo-
nent mixture model of the predicted bounding box to model
the various aspects of the person and objects.

Given the object detections we �nd all the objects whose
predicted person bounds overlap the bounds of the given
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motorbike bicycle horse tvmonitor
Figure 11. Spatial model of the object person interaction. Each im-
age shows the modes of the bounding boxes of the person (blue)
relative to the bounding box of the object (red). Forhorse, motor-
bike and bicycle category the two modes capture front and side
views of the object while for thetvmonitor it captures the fact
that TV monitors are often at the left or right corner of the per-
son bounding box.

person> 0:3. Similar to the poselet activation vector we
construct an ”object activation vector” by taking the highest
score of the detection for each object type among these.

Action context. Often the action of a person can be in-
ferred based on what others are doing in the image. This
is particularly true for actions likeplayinginstrumentand
runningwhich are group activities. Our action context for
each person is a9 dimensional vector with an entry for each
action type whose value is the highest score of the action
prediction among all the other people in the image. Overall
the second stage classi�er is a separate linear SVM for each
action type trained on10 features: self score for that action
and9 for action context.

Experiments. Table1 shows the performance of various
features on the test and validation set. All the parameters
described were set using a10-fold cross validation on the
trainval subset of the images.

The poselet activation vectoralone achieves a perfor-
mance of59:8 on the validation subset of images and does
quite well in distinguishing classes likeridinghorse, run-
ning, walkingandphoning. Adding the object model boosts
the performance of categories likeridingbike and using-
computersigni�cantly, improving the average AP to65:3.
These classes either have the widely varying object types
and poselets are unable to capture the appearance varia-
tion. Modeling the spatial interaction explicitly also helps
for classifyingusingcomputerclass as the interaction is of-
ten outside the bounding box of the person. Finally the con-
text based re scoring improves the performance ofplayin-
ginstrumentandrunningclass as these are often group ac-
tivities.

Figure 12 shows the confusion matrix of our classi-
�er. Some high confusion pairs aref reading, takingphotog
! playinginstrumentandrunning ! walking. Figure13
shows misclassi�ed examples for several pairs of cate-
gories. Overall our method achieves an AP of65:6 on
the validation and59:7 on the test set which is compara-
ble to the winning techniques in PASCAL VOC 2010 chal-
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Figure 12. Confusion matrix for our action classi�er. Each row
shows the distribution of the true labels of the top50 ranked ex-
amples for each action category on the validation subset of the
images. Some high confusion pairs aref reading, takingphotog !
playinginstrumentandrunning! walking.

phoning! takingphoto takingphoto! phoning

reading! usingcomputer usingcomputer! reading

walking ! running running! walking

ridingbike! running running! ridingbike

Figure 13.Pairwise confusions between several classes on the
PASCAL 2010 validation set. Each A! B shows the top4 im-
ages of class A ranked by classi�er of class B. Confusion is often
caused when the person has similar pose or failures of the object
detector.

lenge, for example,60:1 for “INRIA SPM HT” and 60:3
for “CVC BASE”. We refer the readers to the challenge
website1 for details and results of other entries.

1http://pascallin.ecs.soton.ac.uk/challenges/VOC
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Validation Test
category PAV w/ OAV w/ C w/ C
phoning 63.3 62.0 62.0 49.6

playinginstrument 44.2 44.4 45.6 43.2
reading 37.4 44.4 44.3 27.7

ridingbike 62.0 84.7 85.5 83.7
ridinghorse 91.1 97.7 97.5 89.4

running 82.4 84.1 86.0 85.6
takingphoto 21.1 22.9 24.6 31.0

usingcomputer 54.2 64.9 64.3 59.1
walking 82.0 83.6 80.8 67.9
average 59.8 65.3 65.6 59.7

Table 1. Average precision on the action validation and testset us-
ing various features. PAV is the performance using just theposelet
activation vector. Column w/OAV shows the performance by in-
cluding theobject activation vectoras features and column w/C
shows the performance by including action context. The object
features help in theridingbike, ridinghorseandusingcomputercat-
egories, while the context improves the performance onplayingin-
strumentandrunning categories. Our methods achieves an aver-
age AP of59:7 on the test set which is comparable to the winning
techniques in PASCAL VOC2010.

6. Conclusion
We demonstrate the effectiveness of the poselet activa-

tion vector on the challenging tasks of 3D pose estimation
of people and static action recognition. Contrary to the tra-
ditional way of representing pose which is based on the lo-
cations of joints in images, we use the poselet activation
vector to capture the inherent ambiguity of the pose and
aspect in a multi-scale manner. This is well suited for es-
timating the 3D pose of persons as well as actions from
static images. In the future we would like to investigate
this representation for localizing body parts by combining
top down pose estimates with bottom-up priors and exploit
pose-to-pose constraints between people and objects to es-
timate pose better.

Most of the other high performing methods on the PAS-
CAL VOC 2010 action classi�cation task use low-level fea-
tures based on color and texture together with a SVM classi-
�er, without any explicit treatment of pose. We believe that
such methods bene�t from the fact that one is provided with
accurate bounding boxes of the person in the image. This
is quite unrealistic in an automatic system where one has
to estimate the bounds using a noisy object detector. We
on the other hand use the bounding box information quite
loosely by considering all poselet detections that overlap
suf�ciently with the bounding box. In addition, the pose-
let activation vector provides a compact representation of
the pose and action, unlike the high dimensional features
typical of “bag-of-words” style approaches.

The annotations and code for estimating the yaw of the
head and torso in images, as well as the keypoint annota-

tions and code for static image action classi�cation can be
downloaded at the author's website.
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