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Abstract

We present a distributed representation of pose and ap-
pearance of people called the “poselet activation vector”.
First we show that this representation can be used to esti-
mate the pose of people de ned by the 3D orientations of
the head and torso in the challenging PASCAL V210
person detection dataset. Our method is robust to clutter,
aspect and viewpoint variation and works even when body
parts like faces and limbs are occluded or hard to localize.
We combine this representation with other sources of infor-
mation like interaction with objects and other people in the
image and use it for action recognition. We report compet-
itive results on the PASCAL VOZD10static image action
classi cation challenge.

1. Introduction

We can say a fair amount about the people depicted in
Figure1 — the orientations of their heads, torsos and other
body parts with respect to the camera, whether they are sit
ting, standing, running or riding horses, their interagtio
with particular objects, etc. And clearly we can do it from
single image, video is helpful but not essential, and we do
not need to see the whole person to make these inferences

A classical way to approach the problem of action recog-
nition in still images is to recover the underlying stick g-
ure [9, 17]. This could be parameterized by the positions
of various joints, or equivalently various body parts. In
computer graphics this approach has been a resounding su
cess in the form of various techniques for “motion capture”.
By placing appropriate markers on joints, and using multi-

ple cameras or range sensing devices, the entire kinemati®
structure of the human body can be detected, localized and

tracked over timeZ3. But when all we have is a single
image of a person, or a part of a person, not necessarily a
high resolution, in a variety of clothing, the task is much
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Figure 1. Pose and action is revealed from all these patches.

harder. Research on pictorial structurés17] and other
techniques 19 for constructing consistent assemblies of
body parts has made considerable progress, but this is very
far from being a solved problem.

In this paper we take the position that recovering the pre-
cise geometric locations of various body parts is trying to
solve a harder intermediate problem than necessary for our
purposes. We advocate instead the use of a representation,
the “poselet activation vector”, which implicitly repregs

the con guration of the underlying stick gure, and infer-
ences such as head and torso pose, action classi cation, can
be made directly from the poselet activation vector.

We can motivate this by a simpler example. Consider
the problem of inferring the pose of a face with respect to
camera. One way of doing it is as an explicit 2D to 3D ge-
ometric problem by nding the locations of the midpoints
of the eyes, nose etc, and solve for the pose. Alternatively
one can consider the outputs of various face detectors - one
tuned to frontal faces, another to three-quarter view faces
another to faces in pro le. The responses of these detectors
rovide a distributed representation of the pose of the, face
nd one can use an “activation vector” of these responses
as the input to a regression engine to estimate pose. In bi-
Plogical vision, strategies such as these are common place.
Color is represented by a response vector corresponding to
three cone types, line orientation by the responses of vari-
ous simple cells in V1, and indeed neurons have been found
in macaque inferotemporal cortex which show differential
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responses to faces at different orientations, suggestiisy a s
tributed representation there as well. =
In order to generalize this strategy to the human body, we .=
must deal with its articulated nature. Different parts can b
in different con gurations, and occlusion can result inynl
some parts being visible. In addition one needs to deal with , - |
the variation in aspect due to changes in camera direction. Figure 2. Pose and appearance variation across actions.
Poselets, introduced by Bourdev and Mali &nd further
developed in Bourdeet al. [3] for person detection and
segmentation provide a natural framework. doing justice to either of the areas.
We show that the poselet activation vector, which repre- Human pose estimation from still images. Pictorial

sents the degree to with each poselet is present in the imaggtructures based algorithms like that &f [ 9, 17, 10] deal

of a person, provides a distributed representation of POSE ith the articulated nature of humans by nding body parts

and appearance. We use it to estimate the 3.D orientation o jimps and torsos and constructing the overall pose us-
of the head and torso of people in the challenging PASCAL ing the prior knowledge of human body structure. Though

V_OC Zt:)l(r)lpedrsoE det?ﬁtlon data;sé’g.[tThlsf (tjr?tasett IS Stlr?-d completely general, these methods suffer when the parts
n ﬁ‘?m ydatr tW ere fe curren slaetcj)ﬁwe acr) MENOTS are hard to detect in images. Another class of methods
achieve detection performance only a o Surap- work by assuming that the humans appear in backgrounds

proach achieves an error 26:3 across views for the head _which are easy to remove, and in such cases the contour

ﬁlr?)vr\]/ta;ggi%atches the *human error rate” when the person Scarries enough information about the pose. This includes

. . - the shape-context based matching of silhouettes in the work
Action recognition from still images can benet from

thi tati I Mot d other t | of [16], the work of [21] where approximate nearest neigh-
IS representation as wetl. viotion and other temporal CUes, techniques are used to estimate the pose using a large
which have been used for generic action recognition from

. o . dataset of annotated images.
\r/r;(;ekgi Eg’ d2|f2 lei ?l’bfgﬁ] rrl]éstsr‘:ir]sgs:al?[tii“"trl]n;a%ise \év:('jcg A common drawback of all these approaches is that they
pearance of the pgrson pr.ovides valuab%e CUES for inferrFi)ngtr.eat t_he task of pose estimation and detection separately.
the action. For example as seen in Fighyeertain actions Plc_torlgl structure based mode[s often assume a rqugh lo-
. .' ) . : ) calization of the person and fail when there is signi cant
like walking and running are associated with speci ¢ poses

. .- . .~ 2=~ occlusion or clutter. In such a two-stage pipeline it would
while people riding bikes and horses have both a distinctive be helpful if the detector provides a rough estimate of the
pose and appearance.

. . . . . . pose to guide the next step. We also believe that the detec-
g\ctmns often d|n\|/orllve m_teracuqns with d'o theL_objects tion algorithms need to have a crude treatment of pose in
Sgnso[gg] calrr: r:g di(taiotn if)i tlen;??ac\:;fgi);oaé;g?s '(%ugttﬁefcfhem. This is re ected by the fact that some of the best peo-
o . ple detectors on the PASCAL VOC challenge namely the
agents in the scene can provide valuable cues as Wl [

F | tai tivities lik th ¢ detector of Felzenszwati al. [8] and Bourdeet al. [3] are
or example, certain activities fike marathon events or mu- part based detectors which have some treatment of pose.
sicians playing in a concert, are group activities and it is

. . : . Action Recognition from video. Actions in this setting
likely that everyone in the scene is performing the same ac- . ; . .
tion are described by some representation of its spatio-terhpora

. . . signature. This includes the work of Blamik al. [2] and
The rest of the paper is structured as follows: we begin . :
. . : . o Shechtman and Iran?P], who model actions as space-time
with a review of work in the area of action recognition and Lo s
S . . . volumes and classi cation is based on similarity of these
pose estimation in Sectich In Section3, we describe how .
o . volumes. Schuldet al. [20] and Laptev [.4] generalize the
we construct the poselet activation vector for a given perso : . . . .
. : . . —_notion of interest points from images to space-time volumes
in an image. We present experiments on 3D pose estima- . . . .
. : . and use it to represent actions. Actions as motion templates
tion of people in the PASCAL YOQO010people detection .
. . . has been explored in the work of Efres al. [6], where
dataset in Sectiod. Finally we report results on the re-

cently introduced PASCAL VOQO010action classi cation actions are desgnbed as series of templates of opt.lcal ow.
. . . . Other methods likels, 27] are based on representations on
dataset in Sectiof and conclude in Sectiof

the 2D motion tracks of a set of features over time.

Action recognition from stillimages. Humans have a re-

markable ability to infer actions from a still image as shown
The current work draws from the literature of two active in Figurel. In this setting it is natural to build representa-

areas in the computer vision — pose estimation and actiontions on top the output of a pose estimation algorithm. Due

recognition. We brie y describe some without any hope of to the drawbacks of the current pose estimation algorithms,

2. Previous Work
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Figure 3.Our distributed representation of pose using poseletsEach image is shown with the t&active poselets consistent with the
person in the image (shown by their average training exashpl@cclusion, variations in clothing, clutter, lack of eagion in images
makes the pose estimation a hard problem and our represerigatobust to these.

several approaches build pose representations that aee mordegree to which the poselet type is active in that person.

robust — lkizler and Pinarl]/] represent pose using a “his- This provides a distributed representation of the high di-

togram of oriented rectangle” feature which is the proba- mensional non-linear pose space of humans as shown in

bility distribution of the part locations and orientatiogsti- Figure3. Notice that the pose and appearance information

mated using part detectors. Thurau and Hlavag fepre- is encoded at multiple scales. For example, we could have

sent pose as a histogram of pose primitives. These methoda part which indicates just the head or just the torso or the

inherit most if not all of the problems of pose estimation.  full pedestrian. We use this representation for both action
The closest in spirit to our approach is the work of recognition and 3D pose estimation from still images.

Yang et al [25], who also use a representation based on

poselets to infer actions. Pose represented as a con gura4. 3D Pose Estimation from Still Images

tion of body part locations is expressed as a latent variable

which is used for action recognition. Training and inferenc

in the model amount to reasoning over these latent pose

which are themselves inferred using a tree like prior over

First we quantitatively evaluate the power of the pose-
éet activation vector representation for estimating p&er.
task is to estimate the 3D pose of the head and torso given

body parts and poselet detections. Unlike their approachthe bounding box of the person in the Image. Curre.nt ap-
we don't have an explicit representation of the pose and useproac:hes for pose estimation based on variants of pictorial

the “poselet activation vector” itself as a distributed-rep structures are quite ill suited fpr this task as they do not
resentation. In addition, our poselets encode informationdIStInguISh between a front facing and back facing person.

from multiple scales and are not restricted to parts liks leg Some techniques can estimate the 3D pose of the head by

and arms. In our experiments we found that such an over- rst detecting ducial points_ and tting it to a 3D model
complete representation greatly improves the robustrfess 001c the head, or by regressing the pose from _the responses
the system. We show that linear classi ers trained on top of of _face detectors trained to detect faces at different erien
the poselet activation vector can be used for both 3D posetat'on_S [15]2 These methods are not apphc_able when the
estimation of people in the challenging PASCAL VQQC10 face |ts_elf is occluded or when the image is at too I9W a
dataset and static image action recognition demonstrating';‘c‘lomt'on for a face detector, a common occurrence in our

the effectiveness of our representation. set. ) .
The pose/aspect of the person in encoded at multiple

scales and often one can roughly guess the 3D pose of the
person from various parts of the person as seen in Figure
and our representation based on poselets are an effective

are body part detectors trained from annotated data of jointV& {0 use this information. Our results show that we are
locations of people in images. The annotations are used tg2P!€ 10 estimate the pose quite well for both pro le and back
nd patches similar in pose space to a given con guration facing persons.
of joints. A poselet is a SVM classi er trained to recog- A Dataset of 3D Pose Annotations. Since we wanted to
nize such patches. Along with the appearance model onestudy the problem of pose estimation in a challenging set-
can also obtain the distributions of these joints and personting, we collected images of people from traidationsub-
bounding boxes conditioned on each poselet from the annoset of PASCAL VOC2010dataset not marked as dif cult.
tations. Figurel0 shows some example poselets. We asked the users on Amazon Mechanical Tuiktp es-
Given the bounding box of a person in an image, our timate the rotations around X,Y and Z of the head and torso
representation, called the poselet activation vectorsisten by adjusting the pose of two gauge gures as seen in Fig-
of poselets that are consistent with the bounding box. Theure4(a). We manually veri ed the results and threw away
vector has an entry for each poselet type which re ects the the images where there was high disagreement between the

3. Poselet Activation Vector

Our framework is built on top of poseleté,[3] which
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annotators. These typically turned out to be images of low
resolution or severe occlusion.

Our dataset has very few examples where the rotation -
along X and Z axes is high, as is typical of consumer pho-
tographs, hence we removed images which have rotations
along X and Z> 30 and focus on estimating the rotation ,
around Y (Yaw) only. In the end we hat€20people anno- R B R ,
tations that along with their re ections result@240exam- (a) Head Yaw62:10% (b) Torso Yaw:61:71%
ples. The distribution of the yaw across the dataset is shown Yaw Prediction Erfor Rates
in Figure4(c, d, e). ‘ el ‘ ]

Figure4(b) shows the human error in estimating the yaw = 7 7 head -human error
across views of the head and torso. This is measured as the
average of standard deviation of the annotations on a single
image in the view range. The error is small for people in
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canonical views, i.e. when the person is facing front, back, LIRS PSR TR . 7 AR ]
left or right, whereas it is high when the person in facing o - L = - e a—
somewhere in between. Overall the annotators are fairly True Yaw

consistent with one another with a median erro66 (c) Error in predicting yaw across views

for the head and:07 for the torso across views. Figure 5. (a, b) Average confusion matrix ovFfold cross vali-

dation, for predicting four viewseft, right, frontandback The
Experiments. Similar to [3], we train 1200 poselets on  mean diagonal accuracy 82:10% and 61:71% for predicting
the PASCAL train2010+ H3D trainval dataset. Instead of the head and the torso respectively. (c) Error in predicthey
all poselets having the same aspect ratio, we used four asyaw averaged ove discrete views using0-fold cross validation.
pect ratios:96 64, 64 64,64 96and128 64 and Across all views the error is abo@6:3 and23:4 for the head
trained300 poselets of each. In addition we t a model of and torso respectively, while across the front views, i.aw ¢
bounding box prediction for each poselet. We construct thel 90 :90 1. the error is lowe20.0 ;196 . In particular the er-
poselet activation vector by considering all poselet detec ror tw;'en t:]hehperson IS faC'Tg front, i.e. y@w[ 225 ;225 ]
tions whose predicted bounding box overlaps the boundingrna ches the human error rate.
box of the person, de ned by the intersection over union

> 0:20and adding up the detection scores for each poseleting front, i.e. yaw2 [ 225 ;22:5 ] matches the human
type. We use thid200dimensional vector to estimate the error rate. Our method is able to recognize the pose of back
pose of the person. facing people, i.e. ya® [1575; 1575], a45 range
We estimate the pose of the head and torso separatelyaround the back facing view, with an error of ab2Qt error
We discretize the ya® [ 180 ;180 ] into 8 discrete bins  for the head and torso. Approaches based on face detection
and train one-vs-all linear classi ers for predicting the-d  would fail but our representation bene ts from information
crete label. The angle is obtained by parabolic interpoati  at multiple scales like the overall shape of the person, as
using the highest predicted bin and its two adjacent neigh-shown in Figures. The error is smaller when the person is
bors. We optimize our parameters on one split of the datafacing exactly left, right, front and back while it is higher
and report results usingO fold cross validation. We split  when the person is facing somewhere in between, qualita-
the training and test set equally ensuring both the image andively similar to humans.
its re ection are both either in the training or the test set. At rough|y25 error across views, our method is Signif-
Figure5(a, b) show the confusion matrix for the task of jcantly better than the baseline error@@ for the method
predicting the discrete view, one of front, left, right and that always predicts the view as frontal (It géts error
back, for the head and torso. The average diagonal ac<or frontal view, but180 error for back view). Figur&
curacy is62:1% for the head and1:71% for the torso.  shows some example images in our dataset with the esti-
The median errors in predicting the real valued view are mated pose. We believe this is a good result on this dif cult
shown in Figure5(c). We report results by averaging the dataset demonstrating the effectiveness of our representa
error for predicting view acros8 discrete views. Since  tion for coarse 3D pose estimation.
the dataset is biased towards frontal views, this error met-
ric gives us a better idea of the accuracy of the method.5 giatic Action Classi cation
Across all views the error is abo26:3 and234 for the
head and torso respectively, while across the front views, In this section we present our method for action clas-
i.e. yaw2 [ 90 ;90 ], the error is lower20:0 and19:6 si cation and report results on the newly introduced PAS-
respectively. In particular, the error when the personds fa CAL VOC 2010action classi cation benchmark. The in-
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(a) AMT interface (b) Human Error (c) Head Yaw (d) Torso Yaw (e) Head-Torso Yaw

Figure 4. (a) Interface for annotating the 3D pose on Amazechdnical Turk. (b) Human error rate across view for esiimgahe pose
of the head and torso. (c, d, e) Distribution of the yaw of he¢aiso and torso relative to the head, on our 3D pose dataset.

Figure 7. Left to right are examples images in our 3D posesgaiaf increasing prediction error. Under each image thesblows the true
yaw for the head (left) and torso (right) in green and the joted yaw in red. We are able to estimate the pose even wheadbelimbs

and other body parts are hard to detect.

yaw = 180

i _ |

yaw =

—_— 90 .

yaw = +90

Figure 6.Poselets with the highest weights for discrete view
classi cation of the head. Note that information from multiple
scales is used to infer the view. When the person is backdaci
i.e. yaw= 180, poselets corresponding to pedestrians and
upper-body are selected where as for the frontal view faselpts

are selected.

Action speci c poselets. There aré08training examples

for all the action categories. To train poselet models we rs
annotate each person with 2D joint locations on Amazon
Mechanical Turk. Five independent annotators were asked
to annotate every image and the results were averaged with
some outlier rejection. Similar to the approach of \ve
randomly sample windows of various aspect ratios and use
the joint locations to nd training examples each poselet.

Figure 8 shows that pose alone cannot distinguish be-
tween actions and the appearance information is compli-
mentary. For example we would like to learn that people
riding bikes and horses often wear helmets, runners often
wear shorts, or that people taking pictures have their faces
occluded by a camerdo model this, we learn action spe-
ci c appearance by restricting the training examples of a
poselet to belong to the same action category

Many poselets like a “face” poselet may not discriminate
between actionsThe idea illustrated in Figure®, is win-
dows that capture salient pose speci c to certain actions
are likely to be useful for action discriminatioWe mea-
sure “discriminativeness” by the number of within class ex-
amples of the “seed” windows in the tdp= 50 nearest
examples for the poselet. The idea is that if a pose is dis-
criminative then there will be many examples of that poselet

put is a set of bounding boxes on images and the task isfrom within the same class. Combined with the earlier step
to score each of these with respect to nine action cate-this gives us a way to select poselets which detect salient

gories namely phoning, playinginstrument, reading, rid-
ingbike, ridinghorse, running, takingphoto, usingcongout
andwalking Figure2 shows examples from various action
categories.

pose and appearance for actions as shown in Algorithm
Appearance models are based on HG[zhd linear SVM.
We learn1200 action speci ¢ poselets. Figur&0 shows
representative poselets from four action categories.
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phoning running walking ridinghorse
Figure 10. Example poselets shown by their tbpraining examples for various action categories. Theséucagboth the pose and
appearance variation across the action categories.

Algorithm 1 Action speci ¢ poselet selection.
Require: 2D keypoint/action labels on training images.
1: fori =1 tondo
2:  Pick a random seed window and nd the nearest ex-
amplesin con guration space based on the algorithm
of [3].
3:  Compute the number of within class examples in the
k = 50 nearest examples.
4. end for
5. Select the topn seed windows which have the highest
number within class examples. seed ToB6 training examples
6: For each selected window, restrict the training exam-
ples to within the class and learn an appearance model
based on HOG and linear SVM.
Remarks:
Stepsl 5 learn action speci ¢ pose, while steplearns
action speci ¢ appearance.
We ensure diversity by running stebs 6 in parallel. We set
m = 60;n = 600 across20 nodes to learr1200 poselets.

seed ToB6 training examples

Figure 9. The top row shows a seed window that captures ansalie
pose for thetakingphotocategory. The36 nearest examples in
con guration space for the top seed window fasxamples from

seed all examples within class examples  thetakingphotocategory while the bottom seed has oly
Figure 8. The middle image shows the nearest examples mgtchi

the seed using the pose alone, while the image on right shmvs t

top examples within théakingphotocategory. This allows us to . . .
learn appearance and pose speci ¢ to that action. horses have the person and the horse in certain spatial con-

gurations. We model the interaction with four object cat-

egories horse, motorbike, bicyclandtvmonitor We learn
Poselet Activation Vector. The action poselets are run a mixture model of the relative spatial location between the
in a scanning window manner and we collect poselet de-person bounding box and the object bounding box in the im-
tections whose predicted bounds overlap the given persorage as shown in Figurkl. For detecting these objects we
bounds, de ned by the intersection over union of the area use the detector based on poselets trained on these object
> 0:15. Thei'th entry of the poselet activation vector is the categories presented in the PASCAL VOC 2010 object de-
sum of the scores of all such detections of poselet type tection challenge. For each object type we t a two compo-

nent mixture model of the predicted bounding box to model

Spatial Model of Object Interaction. Interaction with ~ the various aspects of the person and objects.

other objects often provides useful cues for disambiguat- Given the object detections we nd all the objects whose
ing actions P6]. For example, images of people riding predicted person bounds overlap the bounds of the given
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motorbike bicycle horse tvmonitor
Figure 11. Spatial model of the object person interactia@chim-

age shows the modes of the bounding boxes of the person (blue

relative to the bounding box of the object (red). Rorse, motor-
bike and bicycle category the two modes capture front and side
views of the object while for thévmonitor it captures the fact
that TV monitors are often at the left or right corner of the-pe
son bounding box.

phoning
playinginstrument
reading

ridingbike

\ ridinghorse
‘ running
takingphoto
usingcomputer|
walking

phoning
reading
ridingbike
running
walking

person> 0:3. Similar to the poselet activation vector we
construct an "object activation vector” by taking the highe
score of the detection for each object type among these.

playinginstrument
ridinghorse
takingphoto
usingcomputer

Action context. Often the action of a person can be in- Figure 12. Confusion matrix for our action classi er. Eaaiwr
ferred based on what others are doing in the image. Thisshows the distribution of the true labels of the &pranked ex-
is particularly true for actions likglayinginstrumentind ~ amples for each action category on the validation subseef t
runningwhich are group activities. Our action context for images. Some high confusion pairs areading, takingphotg !
each person is@dimensional vector with an entry for each playinginstrumenandrunning! - walking

action type whose value is the highest score of the action
prediction among all the other people in the image. Overall
the second stage classi er is a separate linear SVM for each
action type trained ofhO features: self score for that action
and9 for action context.

phoning! takingphoto takingphotd phoning

reading! usingcomputer| usingcomputel reading
Experiments. Tablel1 shows the performance of various
features on the test and validation set. All the parameters
described were set usingl®-fold cross validation on the
trainval subset of the images.

The poselet activation vectoalone achieves a perfor-
mance 0f59:8 on the validation subset of images and does
quite well in distinguishing classes likédinghorse, run-
ning, walkingandphoning Adding the object model boosts
the performance of categories likalingbike and using-
computersigni cantly, improving the average AP 165:3.
These classes either have the widely varying object types
and poselets are unable to capture the appearance varia-
tion. Modeling the spatial interaction explicitly also psl
for classifyingusingcomputeclass as the interaction is of-  Figure 13.Pairwise confusions between several classes on the
ten outside the bounding box of the person. Finally the con- PASCAL 2010 validation set Each A! B shows the topt im-
text based re scoring improves the performancpla§in- ages of class A ranked by classi er of class B. Confusion ierof
ginstrumentandrunningclass as these are often group ac- caused when the person has similar pose or failures of tleetobj
tivities. detector.

Figure 12 shows the confusion matrix of our classi-
er. Some high confusion pairs afeeading, takingphotg
I playinginstrumentandrunning! walking Figurel13
shows misclassi ed examples for several pairs of cate-
gories. Overall our method achieves an AP6&&6 on
the validation andb9:7 on the test set which is compara-
ble to the winning techniques in PASCAL VOC 2010 chal-

walking! running running! walking

ridingbike! running running! ridingbike

lenge, for example60:1 for “INRIA _SPMHT” and 60:3
for “CVC_BASE". We refer the readers to the challenge
websité for details and results of other entries.

Ihttp://pascallin.ecs.soton.ac.uk/challenges/VOC
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Validation Test tions and code for static image action classi cation can be
category| PAV | w/OAV | w/C | w/C downloaded at the author's website.
phoning| 63.3| 62.0 62.0 | 49.6
playinginstrument| 44.2 | 44.4 | 45.6 | 43.2 References
. Ijeadl_ng 37.4 44.4 44.3 | 21.7 [1] Amazon mechanical turkattp://www.mturk.com . 3179
.“ijgblke 62.0 84.7 85.5 83.7 [2] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Bagxctions as space-
ridinghorse | 91.1 97.7 97.5| 89.4 time shapes. ICCV, 2005.3178
running 82.4 84.1 86.0 | 85.6 [3] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting pdepsing mutually
. i | ivations. HCCYV, 2010.3178 3179 318Q 318
takingphoto| 21.1 | 22.9 24.6 | 31.0 éigé's‘e”t poselet activations P i SLTE 180 S1E
usingcomputer 54.2 64.9 64.3 | 59.1 [4] L.Bourdevand J. Malik. Poselets: Body part detectaageed using 3d human
Walklng 82.0 83.6 80.8 67.9 pose annotations. CCV, 2009.3178 3179
average 598 653 656 | 59.7 [5] {\il(;r?a}lr?l:?/nijBz.Jgggssl.SlH|stograms of Oriented GradiefssHuman Detec-
Table 1. Average precision on the action validation andgestis- [6] A.A.Efros, A.C.Berg, G. Mori, and J. Malik. Recogniziagtion at a distance.

ing various features. PAV is the performance using juspiiselet
activation vector Column w/OAV shows the performance by in-
cluding theobject activation vectoas features and column w/C
shows the performance by including action context. Theatbje [8
features help in thedingbike, ridinghorseandusingcomputecat-
egories, while the context improves the performancplagingin- ]
strumentandrunning categories. Our methods achieves an aver-
age AP 0f59:7 on the test set which is comparable to the winning 1,
techniques in PASCAL VOQO010

[7

[11]

6. Conclusion [12]

We demonstrate the effectiveness of the poselet activa-
tion vector on the challenging tasks of 3D pose estimation [*°!
of people and static action recognition. Contrary to the tra (14
ditional way of representing pose which is based on the lo-
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