
Advanced Structured Prediction

Editors:

Tamir Hazan tamir.hazan@technion.ac.il

Technion - Israel Institute of Technology

Technion City, Haifa 32000, Israel

George Papandreou gpapan@google.com

Google Inc.

340 Main St., Los Angeles, CA 90291 USA

Daniel Tarlow dtarlow@microsoft.com

Microsoft Research

Cambridge, CB1 2FB, United Kingdom

This is a draft version of the author chapter.

The MIT Press

Cambridge, Massachusetts

London, England





1 Perturbation Models and PAC-Bayesian

Generalization Bounds

Joseph Keshet joseph.keshet@biu.ac.il

Bar-Ilan University

Ramat-Gan, Israel

Subhransu Maji smaji@cs.umass.edu

University of Massachusetts Amherst

Amherst, MA, USA

Tamir Hazan tamir.hazan@technion.ac.il

Technion - Israel Institute of Technology

Haifa, Israel

Tommi Jaakkola tommi@csail.mit.edu

Massachusetts Institute of Technology - MIT

Cambridge, MA, USA

In this chapter we explore the generalization power of perturbation models.

Learning parameters that minimize the expected task loss of perturbation

models amounts to minimizing PAC-Bayesian generalization bounds. We

provide an elementary derivation of PAC-Bayesian generalization bounds,

while focusing on their Bayesian components, namely their predictive proba-

bilities and their posterior distributions. We connect their predictive proba-

bilities to perturbation models and their posterior distributions to the smooth-

ness of the PAC-Bayesian bound. Consequently, we derive algorithms that

minimize PAC-Bayesian generalization bounds using stochastic gradient de-

scent and explore their effectiveness on speech and visual recognition tasks.
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1.1 Introduction

Learning and inference in complex models drives much of the research

in machine learning applications ranging from computer vision to natural

language processing to computational biology (Blake et al., 2004; Rush

and Collins; Sontag et al., 2008). Each such task has its own measure

of performance, such as the intersection-over-union score in visual object

segmentation, the BLEU score in machine translation, the word error rate

in speech recognition, the NDCG score in information retrieval, and so on.

The inference problem in such cases involves assessing the likelihood of

possible structured-labels, whether they be objects, parsers, or molecular

structures. Given a training dataset of instances and labels, the learning

problem amounts to estimation of the parameters of the inference engine,

so as to minimize the desired measure of performance, or task loss.

The structures of labels are specified by assignments of random variables,

and the likelihood of the assignments are described by a potential function.

Usually it is only feasible to infer the most likely or maximum a-posteriori

(MAP) assignment, rather than sampling according to their likelihood.

Indeed, substantial effort has gone into developing inference algorithms

for predicting MAP assignments, either based on specific parametrized

restrictions such as super-modularity (e.g., Boykov et al., 2001) or by

devising approximate methods based on linear programming relaxations

(e.g., Sontag et al., 2008).

Learning the parameters of the potential function greatly influences the

prediction accuracy. In supervised settings, the learning algorithm is pro-

vided with training data which is composed of pairs of data instances and

their labels. For example, data instances can be images or sentences and

their labels may be the foreground-background segmentation of these im-

ages or the correct translations of these sentences. The goal of the learning

procedure is to find the potential function for which its MAP prediction

for a training data instance is the same as its paired training label. The

goodness of fit between the MAP predicted label and the training label is

measured by a loss function. Unfortunately, the prediction function is non-

smooth as well as non-convex and direct task loss minimization is hard in

practice (McAllester et al., 2010).

To overcome the shortcomings of direct task loss minimization, the task

loss function is replaced with a surrogate loss function. There are various

surrogate loss functions, some of them are convex (and non-smooth), while

others are smooth (and non-convex). The structured hinge loss, a convex

upper bound to the task loss, is the surrogate loss function used both in
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max-margin Markov models (Taskar et al., 2004) and in structural SVMs

(Tsochantaridis et al., 2006). Unfortunately, the the error rate of the struc-

tured hinge loss minimizer does not converge to the to the error rate of the

Bayesian optimal linear predictor in the limit of infinite training data, even

when the task loss is the 0-1 loss (McAllester, 2006; Tewari and Bartlett,

2007). The structured ramp loss (Do et al., 2008) is another surrogate loss

function that proposes a tighter bound to the task loss than the structured

hinge loss. In contrast to the hinge loss, the structured ramp loss was shown

to be strongly consistent (McAllester and Keshet, 2011). In general both

the hinge loss and the structured ramp loss functions require the task loss

function to be decomposable in the size of the output label. Decomposable

task loss functions are required in order to solve the loss-augmented infer-

ence that is used within the training procedure (Ranjbar et al., 2013), and

evaluation metrics like intersection-over-union or word error rate, which are

not decomposable, need to be approximated when utilized in these training

methods.

Conditional random fields (Lafferty et al., 2001) utilizes the negative log-

likelihood as a surrogate loss function. Minimizing this loss amounts to maxi-

mizing the log-likelihood of the conditional Gibbs distribution of the training

data. While this is a convex function with a nice probabilistic properties, it

is unrelated to the task loss, and hence not expected to optimize the risk.

Alternatively, one may integrate the task loss function by minimizing the

expected loss, while averaging with respect to the Gibbs distribution (Gim-

pel and Smith, 2010). This approach is computationally appealing since it

effortlessly deal with non-decomposable loss functions, while shifting the

computational burden to sampling from the Gibbs distribution. Unfortu-

nately, sampling from the Gibbs distribution is provably hard Jerrum and

Sinclair (1993); Goldberg and Jerrum (2007)

Recently, several works (Keshet et al., 2011; Papandreou and Yuille, 2011;

Tarlow et al., 2012) have constructed probability models through MAP

predictions. These “perturb-max” models describe the robustness of the

MAP prediction to random changes of its parameters. Therefore, one can

draw unbiased samples from these distributions using MAP predictions.

Interestingly, when using perturbation models to compute the expected loss

minimization one would ultimately minimizes PAC-Bayesian generalization

bounds (McAllester, 2003; Langford and Shawe-Taylor, 2002; Seeger, 2003;

Catoni, 2007; Germain et al., 2009; Keshet et al., 2011; Seldin et al., 2012).

This chapter explores the Bayesian aspects that emerge from PAC-

Bayesian generalization bounds. We focus on their predictive probability

models, which turn to be perturbation models as well as on PAC-Bayesian

posterior distributions. We also focus on its algorithmic aspects, both of the
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predictive probability and the posterior distribution, so that they could be

used to minimize the risk bound efficiently. We demonstrate the effectiveness

of minimizing these bounds on visual and speech recognition problems.

1.2 Background

Learning complex models typically involves reasoning about the states of

discrete variables whose labels (assignments of values) specify the discrete

structures of interest. The learning task which we consider in this work is

to fit parameters w that produce the most accurate prediction y ∈ Y for a

given object x. Structures of labels are conveniently described by a discrete

product space Y = Y1×· · ·×Yn. We describe the potential of relating a label

y to an object x with respect to the parameters w by real valued functions

θ(y;x,w). Maximum a-posteriori prediction amounts to compute the best

scoring label:

(MAP predictor) ŷw(x) = arg max
y

θ(y;x,w), (1.1)

where y = (y1, ..., yn).

We measure the goodness of fit by a loss function L : Y× Y→ [0, 1]. The

loss of the MAP predictor for an object-label pair is L(ŷw(x), y). We assume

that the object-label pairs in the world are distributed according to an

unknown distribution D. The risk of the MAP predictor that is parametrized

by w, denoted by R(w) is the expected loss

R(w) = E(x,y)∼D

[
L(ŷw(x), y)

]
(1.2)

Our goal is to learn the parameters w and consequently their predictor ŷw(x)

which minimizes the risk, that is,

w∗ = arg min
w

E(x,y)∼D

[
L(ŷw(x), y)

]
. (1.3)

Since the distribution D is unknown, we use a training dataset S of inde-

pendent and identically distributed (i.i.d.) samples of pairs (x, y) from D.

We then define the empirical risk to be

RS(w) = E(x,y)∼S

[
L(ŷw(x), y)

]
=

1

|S|
∑

(x,y)∈S

L(ŷw(x), y) (1.4)

A direct minimization of the empirical risk is computationally unappealing

as it is a non-smooth and non-convex function of w. Alternatively, the loss

function in the empirical risk is replaced with a surrogate loss, and an

additional regularization term is added to avoid overfitting of the parameters
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and add stability. The objective of the learning procedure is therefore

w∗ = arg min
w

E(x,y)∼S

[
L(ŷw(x), y)

]
+ λΩ(w), (1.5)

where Ω(w) is a regularization function and λ is a trade-off parameter.

It is possible to decrease the empirical risk by upper bounding the task

loss function with a convex surrogate, as applied in structured-SVM that is

governed by the hinge-loss:

Lhinge(x, y, w) = max
ŷ∈Y

{L(ŷ, y) + θ(ŷ;x,w)− θ(y;x,w)} (1.6)

It is straightforward to verify that the hinge-loss Lhinge(x, y, w) upper

bounds the task loss L(ŷw(x), y) since

L(ŷw(x), y) ≤ L(ŷw(x), y) + θ(ŷw(x);x,w)− θ(y;x,w) ≤ Lhinge(x, y, w).

Moreover, the hinge-loss is a convex function of w as it is a maximum

of linear functions of w. The hinge-loss leads to “loss adjusted inference”

since computing its value requires more than just MAP inference ŷw(x). In

particular, when the loss function is more involved than the MAP prediction,

as happens in computer vision problems (e.g., PASCAL VOC loss) or

language processing tasks (e.g., BLEU loss), learning with structured-SVMs

is computationally hard.

The prediction ŷw(x) as well as “loss adjusted inference” rely on the

potential structure to compute the MAP assignment. Potential functions are

conveniently described by a family R of subsets of variables r ⊂ {1, ..., n},
called regions. We denote by yr the set of labels that correspond to the

region r, namely (yi)i∈r and consider the following potential functions

θ(y;x,w) =
∑

r∈R θr(yr;x,w). Thus, MAP prediction can be formulated

as an integer linear program:

b∗ ∈ arg max
br(yr)

∑
r,yr

br(yr)θr(yr;x,w) (1.7)

s.t. br(yr) ∈ {0, 1},
∑
yr

br(yr) = 1,
∑
ys\yr

bs(ys) = br(yr) ∀r ⊂ s

The correspondence between MAP prediction and integer linear program

solutions is (ŷw(x))i = arg maxyi b
∗
i (yi). Although integer linear program

solvers provide an alternative to MAP prediction, they may be restricted to

problems of small size. This restriction can be relaxed when one replaces the

integral constraints br(yr) ∈ {0, 1} with nonnegative constraints br(yr) ≥ 0.

These linear program relaxations can be solved efficiently using different

convex max-product solvers, and whenever these solvers produce an integral

solution it is guaranteed to be the MAP prediction (Sontag et al., 2008).
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A substantial effort has been invested to solve this integer linear program

in some special cases, particularly when |r| ≤ 2. In this case, the potential

function corresponds to a standard graph: θ(y;x,w) =
∑

i∈V θi(yi;x,w) +∑
i,j∈E θi,j(yi, yj ;x,w). If the graph has no cycles, MAP prediction can be

computed efficiently using the belief propagation algorithm Pearl (1988).

There are cases where MAP prediction can be computed efficiently for graph

with cycles. A potential function is called supermodular if it is defined over

Y = {−1, 1}n and its pairwise interactions favor adjacent states to have

the same label, i.e., θi,j(−1,−1;x,w) + θi,j(1, 1;x,w) ≥ θi,j(−1, 1;x,w) +

θi,j(1,−1;x,w). In such cases MAP prediction reduces to computing the

min-cut (graph-cuts) algorithm.

1.3 PAC-Bayesian Generalization Bounds

The PAC-Bayesian generalization bound asserts that the overall risk of

predicting w can be estimated by the empirical risk over a finite training

set. This is essentially a measure concentration theorem: the expected value

(risk) can be estimated by its (empirical) sampled mean. Given an object-

label sample (x, y) ∼ D, the loss function L(ŷw(x), y) turns out to be a

bounded random variable in the interval [0, 1]. In the following we assume

that the training data S = {(x1, y1), ..., (xm, ym)} is sampled i.i.d. from the

distribution D, and is denoted by S ∼ Dm. The measure concentration of a

sampled average is then described by the moment generating function, also

known as the Hoeffding lemma:

ES∼Dm

[
exp

(
σ (R(w)−RS(w))

)]
≤ exp(σ2/8m), (1.8)

for all σ ∈ R.

We average over all possible parameters and therefore take into account

all possible predictions ŷw(x):

Lemma 1.1. Let L(ŷ, y) ∈ [0, 1] be a bounded loss function. Let p(w) be

any probability density function over the space of parameters. Then, for any

positive number σ > 0 holds

ES∼DmEw∼p
[

exp
(
σ(R(w)−RS(w))

)]
≤ exp(σ2/8m) (1.9)

The above bound measures the expected (exponentiated) risk of Gibbs

predictors. Gibbs predictors ŷw(x) are randomized predictors, determined

by w ∼ p. The probability distribution p(w) is determined before seeing

the training data and is therefore considered to be a prior distribution over

the parameters. p(w) may be any probability distribution over the space of
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parameters and it determines the amount of influence of any parameter w to

the overall expected risk. Therefore when computing the expected risk it also

takes into account the desired parameters w∗, which are intuitively the risk

minimizer. For example, the prior distribution may be the centered normal

distribution p(w) ∝ exp(‖w‖2/2). Since a centered normal distribution is

defined for every w, it also assigns a weight to w∗. However, the centered

normal distribution rapidly decays outside of a small radius around the

center, and if the desired parameters w∗ are far from the center, the above

expected risk bound only consider a negligible part of it.

The core idea of PAC-Bayesian theory is to shift the Gibbs classifier to

be centered around the desired parameters w∗. Since these parameters are

unknown, the PAC-Bayesian theory applies to all possible parameters u.

Such bounds are called uniform.

Lemma 1.2. Consider the setting of Lemma 1.1. Let qu(w) be any proba-

bility density function over the space of parameters with expectation u. Let

DKL(qu||q) =
∫
qu(w) log(qu(w)/p(w))dw be the KL-divergence between two

distributions. Then, for any set S = {(x1, y1), ..., (xm, ym)} the following

holds simultaneously for all u:

Ew∼p
[

exp
(
R(w)−RS(w)

)]
≥ exp

(
Ew∼qu [R(w)−RS(w)]−DKL(qu||p)

)
(1.10)

Proof. The proof includes two steps. The first step transfers the prior p(w)

to the posterior qu(w). To simplify the notation we omit the subscript of the

posterior distribution, writing it as q(w).

Ew∼p
[

exp
(
R(w)−RS(w)

)]
= Ew∼q

[p(w)

q(w)
exp

(
R(w)−RS(w)

)]
(1.11)

We move the ratio p(w)/q(w) to the exponent, thus the right hand-side

equals

Ew∼q
[

exp
(
R(w)−RS(w)− log

q(w)

p(w)

)]
(1.12)

The second step of the proof uses the convexity of the exponent function to

derive a lower bound to this quantity with

exp
(
Ew∼q[R(w)−RS(w)]− Ew∼q[log(q(w)/p(w))]

)
. (1.13)

The proof then follows from the definition of the KL-divergence as the

expectation of log(q(w)/p(w)).

We omit σ from Lemma 1.2 to simplify the notation. The same proof holds

for σ(R(w)− RS(w)), for any positive σ. The lemma holds for any S, thus
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also holds in expectation, i.e., when taking expectations on both sides of the

inequality. Combining both lemmas above we get

ES∼Dm

[
exp

(
Ew∼qu [σ(R(w)−RS(w))]−DKL(qu||p)]

)]
≤ exp(σ2/8m) (1.14)

This bound holds uniformly (simultaneously) for all u and particularly to

the (empirical) risk minimizer w∗. This bound holds in expectation over

the samples of training sets. It implies a similar bound that holds in high

probability via Markov inequality:

Theorem 1.3. Consider the setting of the above Lemmas. Then, for any

δ ∈ (0, 1] and for any real number λ > 0, with a probability of at least 1− δ
over the draw of the training set, the following holds simultaneously for all

u

Ew∼qu
[
R(w)

]
≤ Ew∼qu

[
RS(w)

]
+ λDKL(qu||p)

+
1

λ
√

8m
+ λ log

1

δ
(1.15)

Proof. Markov inequality asserts that Pr[Z ≤ EZ/δ] ≥ 1− δ. The theorem

follows by setting Z = exp
(
Ew∼qu [λ(R(w) − RS(w))] − DKL(qu||p)]

)
and

using Equation (1.14).

The above bound is a standard PAC-Bayesian bound that appears in

various versions in the literature (McAllester, 2003; Langford and Shawe-

Taylor, 2002; Seeger, 2003; Catoni, 2007; Seldin, 2009; Germain et al., 2009;

Keshet et al., 2011; Seldin et al., 2012).

1.4 Algorithms

Recall that our goal is to find the parameters that minimize the risk as in

Equation (1.3). As we stated in (1.5), the empirical risk can be replaced by

a surrogate loss function and a regularization term. In our case, the training

objective is defined as follows

w∗ = arg min
u

Ew∼qu
[
RS(w)

]
+ λDKL(qu||p), (1.16)

where DKL(qu||p) is the regularization term, λ is the regularization param-

eter, and the surrogate loss is the generalized probit loss defined as

Ew∼qu
[
L(ŷw(x), y)

]
, (1.17)
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and can be derived from the linearity of the expectation and Equation

(1.4). Note that the minimizer of the objective in Equation (1.16) is also

the minimizer of the right-hand side of the bound in Equation (1.15).

We now turn to show that whenever the posterior distributions have

smooth probability density functions qu(w), the perturbation probability

model is as smooth as a function of u. Thus the randomized risk bound can

be minimized with gradient methods to approach the desired u.

Theorem 1.4. Assume qu(w) is as smooth as a function of its parameters,

then the PAC-Bayesian bound is as smooth as a function of u:

∇uEw∼qu
[
RS(w)

]
=

1

m

∑
(x,y)∈S

Ew∼qu
[
∇u[log qu(w)]L(yw(x), y)

]
Moreover, the KL-divergence is a smooth function of w and its gradient takes

the form:

∇uDKL(qu||p) = Ew∼qu
[
∇u[log qu(w)]

(
log(qu(w)/p(w)) + 1

)]
Proof. Ew∼quRS(w) = 1

m

∑m
i=1

∫
qu(w)L(ŷw(xi), yi)dw. Since qu(w) is a

probability density function and L(ŷ, y) ∈ [0, 1] we can differentiate under

the integral (cf. Folland (1999) Theorem 2.27). The gradient is

∇uEw∼qu
[
RS(w)

]
=

1

m

m∑
i=1

∫
∇uqu(w)L(ŷw(x), y)dw. (1.18)

Using the identity ∇uqu(w) = qu(w)∇u log(qu(w)) the first part of the

proof follows. The second part of the proof follows in the same manner,

while noting that ∇u(qu(w) log qu(w)) = (∇uqu(w))(log qu(w) + 1).

The gradient of the randomized empirical risk is governed by the gradient

of the log-probability density function of its corresponding posterior model.

For example, Gaussian model with mean w and identity covariance matrix

has the probability density function qu(w) ∝ exp(−‖w − u‖2/2), thus the

gradient of its log-density is the linear moment γ, i.e., ∇u[log qu] = w − u.

Taking any smooth distribution qu(w), we can find the parameters u by

descending along the stochastic gradient of the PAC-Bayesian generaliza-

tion bound. The gradient of the randomized empirical risk is formed by

two expectations, over the sample points and over the posterior distribu-

tion. Computing these expectations is time consuming, thus we use a single

sample ∇u[log qu(w)]L(yw(x), y) as an unbiased estimator for the gradient.

Similarly we estimate the gradient of the KL-divergence with an unbiased es-

timator which requires a single sample of∇u[log qu(w)](log(qu(w)/p(w))+1).

This approach, called stochastic approximation or online gradient descent,
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amounts to use of the stochastic gradient update rule, where η is the learning

rate. Next, we explore different posterior distributions from computational

perspectives. Specifically, we show how to learn the posterior model so as to

ensure the computational efficiency of its MAP predictor.

1.5 The Bayesian Perspective

PAC-Bayesian theory has a strong Bayesian ingredient. It integrates over un-

certainty of its parameters using the posterior distribution. This important

aspect guarantees a uniform generalization bound, over all possible posterior

parameters. As a consequence of this theory, a new predictive distribution

emerges, the perturbation model, that connects the posterior distribution to

the task loss.

1.5.1 Predictive distribution

The PAC-Bayesian risk give rise to novel distribution models that in-

volve optimization and perturbation. The risk averages over all parame-

ters. Ew∼qu [R(w)] = Ew∼qu [L(ŷw(x), y)]. To reveal the underlining Bayesian

model we aggregate all parameters w that result in the same prediction

p(y|x;u) = Pw∼qu [y = ŷw(x)] (1.19)

This novel probability distribution measures how much stable a prediction

is under random perturbation of the parameters. The appealing property

of this distribution is that unlike the Gibbs distribution, it is easy to draw

unbiased samples for as long as optimizing is easy. Since this perturbation

model is defined by perturbation and optimization it is also called perturb-

max or perturb-and-map model.

1.5.2 Posterior distributions

The posterior distribution accounts for the space of parameters that can be

learned. The ability to efficiently apply MAP predictors is key to the success

of the learning process. Although MAP predictions are NP-hard in general,

there are posterior models for which they can be computed efficiently. For

example, whenever the potential function corresponds to a graphical model

with no cycles, MAP prediction can be efficiently computed for any learned

parameters w.

Learning unconstrained parameters with random MAP predictors provides

some freedom in choosing the posterior distribution. In fact, Theorem 1.4
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suggests that one can learn any posterior distribution by performing gradient

descent on its risk bound, as long as its probability density function is

smooth. We show that for unconstrained parameters, additive posterior

distributions simplify the learning problem, and the complexity of the bound

(i.e., its KL-divergence) mostly depends on its prior distribution.

Corollary 1.5. Let q0(γ) be a smooth probability density function with

zero mean and set the posterior distribution using additive shifts qw(γ) =

q0(γ − w). Let H(q) = −Eγ∼q[log q(γ)] be the entropy function. Then

DKL(qw||p) = −H(q0)− Eγ∼q0 [log p(γ + w)]

In particular, if p(γ) ∝ exp(−‖γ‖2) is Gaussian then ∇wDKL(qw||p) = w

Proof: DKL(qw||p) = −H(qw) − Eγ∼qw [log p(γ)]. By a linear change of

variable γ̂ = γ − w it follows that H(qw) = H(q0) thus ∇wH(qw) = 0.

Similarly Eγ∼qw [log p(γ)] = Eγ∼q0 [log p(γ + w)]. Finally, if p(γ) is Gaussian

then Eγ∼q0 [log p(γ + w)] = −w2 − Eγ∼q0 [γ2]. �
This result implies that every additively-shifted smooth posterior distri-

bution may consider the KL-divergence penalty as the square regularization

when using a Gaussian prior p(γ) ∝ exp(−‖γ‖2). This generalizes the stan-

dard claim on Gaussian posterior distributions Langford and Shawe-Taylor

(2002), for which q0(γ) are Gaussians. Thus one can use different posterior

distributions to better fit the randomized empirical risk without increasing

the computational complexity over Gaussian processes.

Learning unconstrained parameters can be efficiently applied to tree struc-

tured graphical models. This, however, is restrictive. Many practical prob-

lems require more complex models, with many cycles. For some of these

models linear program solvers give efficient, although sometimes approxi-

mate, MAP predictions. For supermodular models there are specific solvers,

such as graph-cuts, that produce fast and accurate MAP predictions. In

the following we show how to define posterior distributions that guarantee

efficient predictions, thus allowing efficient sampling and learning.

MAP predictions can be computed efficiently in important practical

cases, e.g., supermodular potential functions satisfying θi,j(−1,−1;x,w) +

θi,j(1, 1;x,w) ≥ θi,j(−1, 1;x,w)+θi,j(1,−1;x,w). Whenever we restrict our-

selves to symmetric potential function θi,j(yi, yj ;x,w) = wi,jyiyj , super-

modularity translates to nonnegative constraint on the parameters wi,j ≥ 0.

In order to model posterior distributions that allow efficient sampling we

define models over the constrained parameter space. Unfortunately, the ad-

ditive posterior models qw(γ) = q0(γ−w) are inappropriate for this purpose,

as they have a positive probability for negative γ values and would generate
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non-supermodular models.

To learn constrained parameters one requires posterior distributions that

respect these constraints. For nonnegative parameters we apply posterior

distributions that are defined on the nonnegative real numbers. We suggest

the incorporation of the parameters of the posterior distribution in a multi-

plicative manner into a distribution over the nonnegative real numbers. For

any distribution qα(γ) we determine a posterior distribution with parame-

ters w as qw(γ) = qα(γ/w)/w. We show that multiplicative posterior models

naturally provide log-barrier functions over the constrained set of nonnega-

tive numbers. This property is important to the computational efficiency of

the bound minimization algorithm.

Corollary 1.6. For any probability distribution qα(γ), let qα,w(γ) =

qα(γ/w)/w be the parametrized posterior distribution. Then

DKL(qα,w||p) = −H(qα)− logw − Eγ∼qα [log p(wγ)]

Define the Gamma function Γ(α) =
∫∞
0 γα−1 exp(−γ). If p(γ) = qα(γ) =

γα−1 exp(−γ)/Γ(α) have the Gamma distribution with parameter α, then

Eγ∼qα [log p(wγ)] = (α − 1) logw − αw. Alternatively, if p(γ) are truncated

Gaussians then Eγ∼qα [log p(wγ)] = −α
2w

2 + log
√
π/2.

Proof: The entropy of multiplicative posterior models naturally implies

the log-barrier function:

−H(qα,w)
γ̂=γ/w

=

∫
qα(γ̂)

(
log qα(γ̂)− logw

)
dγ̂ = −H(qα)− logw.

Similarly, Eγ∼qα,w [log p(γ)] = Eγ∼qα [log p(wγ)]. The special cases for the

Gamma and the truncated normal distribution follow by a direct computa-

tion. �
The multiplicative posterior distribution would provide the barrier func-

tion − logw as part of its KL-divergence. Thus the multiplicative posterior

effortlessly enforces the constraints of its parameters. This property suggests

that using multiplicative rules is computationally favorable. Interestingly,

using a prior model with Gamma distribution adds to the barrier function a

linear regularization term ‖w‖1 that encourages sparsity. On the other hand,

a prior model with a truncated Gaussian adds a square regularization term

which drifts the nonnegative parameters away from zero. A computational

disadvantage of the Gaussian prior is that its barrier function cannot be

controlled by a parameter α.
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1.6 Approximate Inference

We may use the flexibility of Bayesian models to extend perturbation models

beyond MAP prediction, as in the case of approximate inference. MAP

prediction can be phrased as an integer linear program, stated in Equation

(1.7). The computational burden of integer linear programs can be relaxed

when one replaces the integral constraints with nonnegative constraints. This

approach produces approximate MAP predictions. An important learning

challenge is to extend the predictive distribution of perturbation models to

incorporate approximate MAP solutions. Approximate MAP predictions are

are described by the feasible set of their linear program relaxations which is

usually called the local polytope:

L(R) =
{
br(yr) : br(yr) ≥ 0,

∑
yr

br(yr) = 1, ∀r ⊂ s
∑
ys\yr

bs(ys) = br(yr)
}

Linear program solutions are usually the extreme points of their feasible

polytope. The local polytope is defined by a finite set of equalities and in-

equalities, thus it has a finite number of extreme points. The predictive

distribution that is defined in Equation (1.19) can be effortlessly extended

to the finite set of the local polytope’s extreme points. This approach has

two flaws. First, linear program solutions might not be extreme points, and

decoding such a point usually requires additional computational effort. Sec-

ond, without describing the linear program solutions one cannot incorporate

loss functions that take the structural properties of approximate MAP pre-

dictions into account when computing the randomized risk.

Theorem 1.7. Consider approximate MAP predictions that arise from

relaxation of the MAP prediction problem in Equation (1.7).

arg max
br(yr)

∑
r,yr

br(yr)θr(yr;x,w) s.t. b ∈ L(R)

Then any optimal solution b∗ is described by a vector ỹw(x) in the finite

power sets over the regions Ỹ ⊂ ×r2Yr :

ỹw(x) = (ỹw,r(x))r∈R where ỹw,r(x) = {yr : b∗r(yr) > 0}

Moreover, if there is a unique optimal solution b∗ then it corresponds to an

extreme point in the local polytope.

Proof: The program is convex over a compact set, thus strong duality

holds. Fixing the Lagrange multipliers λr→s(yr) that correspond to the

marginal constraints
∑

ys\yr bs(ys) = br(yr), and considering the probability
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constraints as the domain of the primal program, we derive the dual program∑
r

max
yr

{
θr(yr;x,w) +

∑
c:c⊂r

λc→r(yc)−
∑
p:p⊃r

λr→p(yr)
}

Lagrange optimality constraints (or equivalently, Danskin Theorem) deter-

mine the primal optimal solutions b∗r(yr) to be probability distributions over

the set arg maxyr{θr(yr;x,w)+
∑

c:c⊂r λ
∗
c→r(yc)−

∑
p:p⊃r λ

∗
r→p(yr)} that sat-

isfy the marginalization constraints. Thus ỹw,r(x) is the information that

identifies the primal optimal solutions, i.e., any other primal feasible solu-

tion that has the same ỹw,r(x) is also a primal optimal solution. �
This theorem extends Proposition 3 in Globerson and Jaakkola (2007)

to non-binary and non-pairwise graphical models. The theorem describes

the discrete structures of approximate MAP predictions. Thus we are able

to define posterior distributions that use efficient, although approximate,

predictions while taking into account their structures. To integrate these

posterior distributions to randomized risk we extend the loss function to

L(ỹw(x), y). One can verify that the results in Section 1.3 follow through,

e.g., by considering loss functions L : Ỹ × Ỹ → [0, 1] while the training

examples labels belong to the subset Y ⊂ Ỹ.

1.7 Empirical Evaluation

We presents two sets of experiments. The first set is a phoneme recognizer

when the loss is frame error rate (Hamming distance) and phoneme error rate

(normalized edit distance). The second set of experiments is an interactive

image segmentation.

1.7.1 Phonetic recognition

We evaluated the proposed method on the TIMIT acoustic-phonetic con-

tinuous speech corpus (Lamel et al., 1986). The training set contains 462

speakers and 3696 utterances. We used the core test set of 24 speakers and

192 utterances and a development set of 50 speakers and 400 utterances

as defined in (Sha and Saul, 2007) to tune the parameters. Following the

common practice (Lee and Hon, 1989), we mapped the 61 TIMIT phonemes

into 48 phonemes for training, and further collapsed from 48 phonemes to

39 phonemes for evaluation. We extracted 12 MFCC features and log energy

with their deltas and double deltas to form 39-dimensional acoustic feature

vectors. The window size and the frame size were 25 msec and 10 msec,

respectively.
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Similar to the output and transition probabilities in HMMs, our imple-

mentation has two sets of potentials. The first set of potential captures the

confidence of a phoneme based on the acoustic. For each phoneme we define

a potential function that is a sum over all acoustic features corresponding

to that phoneme. Rather than sum the acoustic features directly, we sum

them mapped through an RBF kernel. The kernel is approximated using the

Taylor expansion of order 3. Below we report results with a context window

of 1 frame and a context window of 9 frames.

The second set of potentials captures both the duration of each phoneme

and the transition between phonemes. For each pair of phonemes p, q ∈ P
we define the potential as a sum over all transitions between phoneme p and

q.

We applied the algorithm as discussed in Section 1.4 where we set the

parameters over a development set. The probit expectation was approxi-

mated by a mean over 1000 samples. The initial weight vector was set to

averaged weight vector of the Passive-Aggressive (PA) algorithm Crammer

et al. (2006), which was trained with the same set of parameters and with

100 epochs as described in Crammer (2010).

Table 1.1 summarizes the results and compare the performance of the

proposed algorithm to other algorithms for phoneme recognition. Although

the algorithm aims at minimizing the phoneme error rate, we also report the

frame error rate, which is the fraction of misclassified frames. A common

practice is to split each phoneme segment into three (or more) states. Using

such a technique usually improves performance (see for example Mohamed

and Hinton (2010); Sung and Jurafsky (2010); Schwartz et al. (2006)). Here

we report results on approaches which treat the phoneme as a whole, and

defer the issues of splitting into states in our algorithm for future work. In

the upper part of the table (above the line), we report results on approaches

which make use of context window of 1 frame. The first two rows are two

HMM systems taken from Keshet et al. (2006) and Cheng et al. (2009) with

a single state corresponding to our setting. KSBSC Keshet et al. (2006)

is a kernel-based recognizer trained with the PA algorithm. PA and DROP

Crammer (2010) are online algorithms which use the same setup and feature

functions described here. Online LM-HMM Cheng et al. (2009) and Batch

LM-HMM Sha and Saul (2007) are algorithms for large margin training

of continuous density HMMs. Below the line, at the bottom part of the

table, we report the results with a context of 9 frames. CRF Morris and

Fosler-Lussier (2008) is based on the computation of local posteriors with

MLPs, which was trained on a context of 9 frames. We can see that our

algorithm outperforms all algorithms except for the large margin HMMs.

The difference between our algorithm and the LM-HMM algorithm might
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Method Frame Phoneme
error rate error rate

HMM (Cheng et al., 2009) 39.3% 42.0%

HMM (Keshet et al., 2006) 35.1% 40.9%

KSBSC (Keshet et al., 2006) - 45.1%

PA (Crammer, 2010) 30.0% 33.4%

DROP (Crammer, 2010) 29.2% 31.1%

PAC-Bayes 1-frame 27.7% 30.2%

Online LM-HMM (Cheng et al., 2009) 25.0% 30.2%

Batch LM-HMM (Sha and Saul, 2007) - 28.2%

CRF, 9-frames, MLP (Morris and Fosler-Lussier, 2008) - 29.3%

PAC-Bayes 9-frames 26.5% 28.6%

Table 1.1: Reported results on TIMIT core test set.

be in the richer expressive power of the latter. Using a context of 9 frames

the results of our algorithm are comparable to LM-HMM.

1.7.2 Image segmentation

We perform experiments on an interactive image segmentation. We use

the Grabcut dataset proposed by Blake et al. (2004) which consists of 50

images of objects on cluttered backgrounds and the goal is to obtain the

pixel-accurate segmentations of the object given an initial “trimap” (see

Figure 1.1). A trimap is an approximate segmentation of the image into

regions that are well inside, well outside and the boundary of the object,

something a user can easily specify in an interactive application.

A popular approach for segmentation is the GrabCut approach (Boykov

et al., 2001; Blake et al., 2004). We learn parameters for the “Gaussian

Mixture Markov Random Field” (GMMRF) formulation of Blake et al.

(2004) using a potential function over foreground/background segmentations

Y = {−1, 1}n: θ(y;x,w) =
∑

i∈V θi(yi;x,w) +
∑

i,j∈E θi,j(yi, yj ;x,w). The

local potentials are θi(yi;x,w) = wyi logP (yi|x), where wyi are parameters

to be learned while P (yi|x) are obtained from a Gaussian mixture model

learned on the background and foreground pixels for an image x in the

initial trimap. The pairwise potentials are θi,j(yi, yj ;x,w) = wa exp(−(xi −
xj)

2)yiyj , where xi denotes the intensity of image x at pixel i, and wa are

the parameters to be learned for the angles a ∈ {0, 90, 45,−45}◦. These

potential functions are supermodular as long as the parameters wa are

nonnegative, thus MAP prediction can be computed efficiently with the

graph-cuts algorithm. For these parameters we use multiplicative posterior
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model with the Gamma distribution. The dataset does not come with a

standard training/test split so we use the odd set of images for training and

even set of images for testing. We use stochastic gradient descent with the

step parameter decaying as ηt = η
to+t

for 250 iterations.

We use two different loss functions for training/testing our approach to il-

lustrate the flexibility of our approach for learning using various task specific

loss functions. The “GrabCut loss” measures the fraction of incorrect pixel

labels in the region specified as the boundary in the trimap. The “PASCAL

loss”, which is commonly used in several image segmentation benchmarks,

measures the ratio of the intersection and union of the foregrounds of ground

truth segmentation and the solution.

As a comparison we also trained parameters using moment matching of

MAP perturbations (Papandreou and Yuille, 2011) and structured SVM.

We use a stochastic gradient approach with a decaying step size for

1000 iterations. Using structured SVM, solving loss-augmented inference

maxŷ∈Y {L(y, ŷ) + θ(y;x,w)} with the hamming loss can be efficiently done

using graph-cuts. We also consider learning parameters with all-zero loss

function, i.e., L(y, ŷ) ≡ 0. To ensure that the weights remain non-negative

we project the weights into the non-negative side after each iteration.

Table 1.2 shows the results of learning using various methods. For the

GrabCut loss, our method obtains comparable results to the GMMRF

framework of Blake et al. (2004), which used hand-tuned parameters. Our

results are significantly better when PASCAL loss is used. Our method also

outperforms the parameters learned using structured SVM and Perturb-

and-MAP approaches. In our experiments the structured SVM with the

hamming loss did not perform well – the loss augmented inference tended

to focus on maximum violations instead of good solutions which causes

the parameters to change even though the MAP solution has a low loss

(a similar phenomenon was observed in Szummer et al. (2008). Using

the all-zero loss tends to produce better results in practice as seen in

Table 1.2. Figure 1.1 shows some sample images, the input trimap, and

the segmentations obtained using our approach.

1.8 Discussion

Learning complex models requires one to consider non-decomposable loss

functions that take into account the desirable structures. We suggest the

use of the Bayesian perspectives to efficiently sample and learn such models

using random MAP predictions. We show that any smooth posterior dis-

tribution would suffice to define a smooth PAC-Bayesian risk bound which
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Method Grabcut loss PASCAL loss

Our method 7.77% 5.29%

Structured SVM (hamming loss) 9.74% 6.66%

Structured SVM (all-zero loss) 7.87% 5.63%

GMMRF (Blake et al., 2004) 7.88% 5.85%

Perturb-and-MAP (Papandreou and Yuille, 2011) 8.19% 5.76%

Table 1.2: Learning the Grabcut segmentations using two different loss functions.
Our learned parameters outperform structured SVM approaches and Perturb-and-
MAP moment matching

Figure 1.1: Two examples of image (left), input “trimap” (middle) and the final
segmentation (right) produced using our learned parameters.
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can be minimized using gradient decent. In addition, we relate the poste-

rior distributions to the computational properties of the MAP predictors.

We suggest multiplicative posterior models to learn supermodular potential

functions that come with specialized MAP predictors such as the graph-cut

algorithm. We also describe label-augmented posterior models that can use

efficient MAP approximations, such as those arising from linear program

relaxations. We did not evaluate the performance of these posterior models,

and further exploration of such models is required.

The results here focus on posterior models that would allow for efficient

sampling using MAP predictions. There are other cases for which specific

posterior distributions might be handy, e.g., learning posterior distributions

of Gaussian mixture models. In these cases, the parameters include the

covariance matrix, thus would require to sample over the family of positive

definite matrices.
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