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Abstract
The mode of manual annotation used in an interactive

segmentation algorithm affects both its accuracy and ease-
of-use. For example, bounding boxes are fast to supply, yet
may be too coarse to get good results on difficult images;
freehand outlines are slower to supply and more specific,
yet they may be overkill for simple images. Whereas ex-
isting methods assume a fixed form of input no matter the
image, we propose to predict the tradeoff between accuracy
and effort. Our approach learns whether a graph cuts seg-
mentation will succeed if initialized with a given annotation
mode. Whether given a single image that should be seg-
mented as quickly as possible, or a batch of images with
fixed annotation budget, we show how to use these predic-
tions to select the easiest modality that will be sufficiently
strong to yield high quality segmentations.1

1. Introduction
Foreground segmentation is a fundamental vision prob-

lem with an array of applications. These include helping
users perform precise visual search, training object recog-
nition system, rotoscoping etc. In any such scenario, it is
natural for humans to help annotate the foreground.

Research on interactive segmentation considers how a
human can work in concert with a segmentation algorithm
to efficiently identify the foreground region. Typically, the
human gives high-level guidance—in the form of coarse
spatial annotations, which the algorithm uses to learn fore-
ground/background models and then refine the input down
to the pixel level segmentation.

Existing methods (e.g. [3]) assume the user always gives
input in a particular form (e.g., a bounding box or a scrib-
ble), and the focus is on using that input most effectively.
However this leads to a suboptimal tradeoff in human and
machine effort. The problem is that each mode of input re-
quires a different degree of annotator effort. At the same
time, depending on its content, an image may be better
served by one form of input or another (Fig. 1 shows some
examples).

In this work, we propose to learn the image properties
that indicate how successful a given form of user input will
be, once handed to an interactive segmentation algorithm.
This enables us to develop an image annotation tool which

1This work appeared in ICCV 2013 [2].

(a) Image (b) Ground Truth (c) Bounding Box (d) Sloppy Contour
Figure 1: Interactive segmentation results (shown in red) for three im-
ages using various annotation strengths (marked in green). Note how
the most effective mode of input depends on the image content. Our
method predicts the easiest modality that will be sufficiently strong to
successfully segment a given image.

utilizes human effort in an optimal manner, by carefully se-
lecting which input modality is sufficiently strong and re-
quires least effort for a given image.

Various recent methods attempt to reduce human label-
ing effort, for example by selecting the most useful frames
for video segmentation [6, 5] or asking a human to click on
informative object parts [7]. Whereas prior work predicts
which images should be annotated (and possibly where) to
minimize uncertainty, we predict what strength of annota-
tion will be sufficient for interactive segmentation to suc-
ceed. Furthermore, whereas most existing methods assume
a back-and-forth with the annotator, we take a “one-shot”
approach that makes all requests simultaneously, a poten-
tial advantage for crowdsourcing or mobile interfaces.

2. Approach
In interactive segmentation, the user indicates the fore-

ground with some mode of input. No matter the annotation
mode, we use the pixels inside and outside the user-marked
boundary to initialize the foreground and background mod-
els, respectively. Using these appearance models, we then
define our segmentation model as the standard MRF based
energy function with unary and pairwise terms. We use
graph cuts [1] to minimize this energy, and use the GrabCut
idea to iteratively refine the segmentation [3]. Our approach
chooses from three annotation modalities:
(1) Bounding box: Tight rectangle around the foreground
objects (fastest).
(2) Sloppy contour: Rough contour surrounding the fore-
ground; provides tighter object boundary (intermediate).
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(3) Tight polygon: Tight polygon along the foreground
boundaries, equivalent to perfect segmentation (slowest).

Given a training set for which the true foreground is
known, we first simulate the human input for each training
image by fitting a tight rectangle around the true foreground
mask (for bounding box) and by dilating the true mask by
20 pixels (for sloppy contour). After applying graph cuts
segmentation with these simulated inputs, we obtain a fore-
ground estimate for each modality.

Using these foreground estimates, we compute features
which capture the degree of separation between foreground
and background regions, which directly affects the perfor-
mance of graph cuts segmentation. Our features capture
the color dissimilarity between foreground and background
regions, uncertainty in the graph cuts solution, foreground
complexity, and how well the output segmentation aligns
to strong image boundaries. We also use these foreground
estimates to categorize every training image as “easy” or
“hard” for a particular modality based on its overlap score
with the ground truth mask (See [2] for details).

We train separate discriminative classifiers (for bound-
ing box and sloppy contour) that take an image as input,
and predicts whether a given annotation modality will be
successful in segmenting it. Given a novel image at test
time, we apply a saliency detector to coarsely estimate the
foreground. Using that estimate, we extract the separability
features as described above, and apply the difficulty classi-
fiers to predict the relative success of each modality.

Having predicted the relative success of each modality,
we can explicitly reason about the tradeoff in user effort and
segmentation quality. We propose two ways to determine
the appropriate annotation choice. In the first, we take a sin-
gle image as input, and ask the human user to provide the
easiest (fastest) form of input that the system expects to be
sufficiently strong. In the second, we consider a batch of im-
ages and a fixed annotation budget. Using the classifier con-
fidence scores, we design an optimization strategy to select
the optimal annotation tool for each image that will maxi-
mize total predicted accuracy for the entire batch, subject to
the constraint that annotation cost must not exceed the bud-
get. We assume a fixed cost per modality for each image:
Bounding box (7s), Sloppy contour (20s), Tight polygon
(54s). These estimates come from the average time taken
by the 101 users in a Mechanical Turk user study.

3. Results

We evaluate on three public datasets (IIS, MSRC and
iCoseg) that provide pixel-level label and compare with the
following baselines: (1) Otsu thresholding: a classic adap-
tive thresholding technique. (2) Effort Prediction [4]:
state-of-the-art method for estimating image difficulty. (3)
Global Features: difficulty predictors trained using global
image features. (4) GT-Input: upper bound, uses ground
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Figure 2: Difficulty prediction accuracy for cross-dataset experiments.

BBox/Sloppy contour sufficient Sloppy contour sufficient Tight polygon required

Figure 3: Example successful predictions per annotation modality.

truth masks instead of saliency based estimate at test time.
(5) Random: random confidence value for each modality.

Predicting difficulty per modality First we see how well
all methods predict the success of each annotation modality.
Fig. 2 shows the comparison of our method with other base-
lines in a leave-one-dataset-out experimental setup. Our ap-
proach consistently performs well for both input modalities.
The high performance shows that our method is learning
which generic cues indicate if a modality will succeed—not
some idiosyncrasies of the particular datasets. Fig. 3 shows
some example predictions.
Annotation choices to meet a budget Next we evaluate
our idea for optimizing requests to meet a budget, with a
Mechanical Turk user study. The budget values range from
the minimum (bounding boxes for all images) to the maxi-
mum (tight polygons for all images). For each budget value
we use our optimization strategy to make a collective deci-
sion for the entire set of images.
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Figure 4: Annotation choices
with a budget.

We then present users with the
necessary tools to do each modal-
ity, and time them as they work
on each image. We feed the
boxes/contours annotated by the
users to the graph cuts engine and
compute the overlap score with
ground truth mask. Fig. 4 plots the
user timing information against
the final segmentation accuracy. Our method consistently
selects the modalities that best use annotation resources: at
almost every budget point, we achieve the highest accuracy.
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