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Machine Learning Problems
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Histogram Features for Computer Vision
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Step 1: Divide image into (many) patches

Svetlana Lazebnik

Histogram Features for Computer Vision

Step 2: Look up each patch in dictionary
(Find closest “visual word”)

Svetlana Lazebnik




Histogram Features for Computer Vision
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Step 3: Represent images by frequencies of “visual words”
(histograms)

Svetlana Lazebnik

Histogram Features for Computer Vision

Step 4: Use histograms as feature vectors in supervised ML
algorithm
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How Do We Create The chtlonary?
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Appearance dictionary

Source: B. Leibe

Learning the visual vocabulary
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Slide credit: Josef Sivic

Learning the visual vocabulary
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Learning the visual vocabulary

Visual vocabulary
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K-Means Problem

Given

» Feature vectors x(1), ... x(m) ¢ R»
» Desired number of clusters k

Find

» Cluster centers pi,...,u; € R?
» Cluster labels ¢V € {1,2,...,k}

Minimize

J(e,m) =D 12 = peo P
i=1

K-Means Algorithm

1. Initialize py1, pa, . .., ux € R™ randomly
2. Repeat until convergence

> For all points 7, assign x(") to closest cluster center

D) argmin; [[x® — will?

> For all clusters j, set pu; = average of currently assigned points

o S e = )
T e = 5

K-Means Example

Initialize cluster centers arbitrarily:

[Bishop Pattern Recognition and Machine Learning ]

K-Means Example

Assign points:
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K-Means Example

Update centers:
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K-Means Example

Assign points:
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K-Means Example

Update centers:
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K-Means Example

Assign points:
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K-Means Example

Update centers:
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K-Means Example

Assign points:
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K-Means Example

Update centers:
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K-Means Convergence

m

Teom) = 3 [12® = o |2
=1

Not hard to show that

1. p updates minimize J while holding ¢ fixed
2. c updates minimize J while holding pu fixed

3. The algorithm converges




“Soft” clustering

Often desirable to fractionally assign points to clusters
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“Soft” clustering

There's something Bayesian happening here. ..

Generative Model: Mixture of Gaussians

» First choose cluster: p(cl) = j) = ¢;
» Then generate x(!) from conditional distribution p(x® | ¢(¥)
» Hide cluster assignments

05 05

p(x® | = k) follows a Gaussian distribution with parameters
13 and Ek

Aside: Multivariate Gaussian Distribution

p(x;p, X)) = WQXP ( - %(X - I‘«)Tzfl(x - H))

Describes random vector x € R™ with

» Mean vector p € R"
» Covariance matrix ¥ € R"*"

» P(xe A) = /Ap(x;u7 )dx

Examples

Multivariate Gaussian

o0 %) = g (5 — - )

Examples: Symmetric

¥ = 0.61; S =2l




Examples: Non-Symmetric

Contours

Mean

* Change mu: move mean of density around

Mixture of Gaussians Problem
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Given feature vectors x(l), . 7x<m), number of “clusters” k, find:

» Cluster priors ¢; = p(c = j)
> Gaussian parameters p; and X; for each cluster
> Soft cluster assignments p(c(®) = j|x(®)

Mixture of Gaussians Algorithm

Repeat until convergence

1. Compute posterior probability that x() comes from cluster j

w](-i) = p(y(” =7l X(i))

;- p(x [y = j)

= Bayes rule
SF 61 plx) |40 = 1) (Bayes rule)

(@)

2. Update parameters ¢;, (1, X; using w; values as weights

Update Parameters

¢j = average weight assigned to class j
p; = weighted mean for class j
¥; = weighted covariance for class j

2211 w]('i)x(i)

m (i)
i=1W;

K=

St SO0 — )0 — )"

m (i)
i=1W;

¥ =




Mixture of Gaussians

Initialize cluster parameters:
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Mixture of Gaussians

Update soft assignments:
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Mixture of Gaussians

Update cluster parameters:
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Mixture of Gaussians

Next iteration:

-2 0 (d) 2
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Mixture of Gaussians

And so on:
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Mixture of Gaussians Convergence

» This algorithm converges

» Can be formally justified as an instance of the Expectation
Maximization (EM) algorithm

» For your next ML class!




The End

That's it for new material!

Quiz Topics

» SVMs

margin, functional margin, support vectors
Kernel trick

Gaussian kernel SVMs

Role of C' and ~

>
>
>
>

» Neural nets

> ldea of back-prop (chain rule)

» Application of back-prop at level of movie recommendations
and logistic regression

Quiz Topics

» Movie recommendations
» PCA

» X =~ ZW7T

» Model interpretation and use
» Bayes

> Bayes rule

> Application of Bayes rule (e.g. biased coin calculation)

> Naive Bayes

» Conceptual understanding of discriminiative vs. generative

» K-means

Extra Slides

Gaussian Distribution in 1D

Describes continuous random variable X with

)

> Mean p
» Standard deviation o
» P(X € [a,b]) = j:p(x; w,o%)dz

Illustrate p, o, area under curve

1D Gaussian Estimation

Given scalars (1) z(m)

Find best-fitting 1D Gaussian density




Multivariate Gaussian Estimation

Given feature vectors x| ... x(™ ¢ R"

Find best-fitting Gaussian density
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H*E;X
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Gaussian Discriminant Analysis

Generative model where p(x | y) is Gaussian

picture

Gaussian Discriminant Analysis Estimation

Given labeled training examples (x(), yM), ... (x(™) y(m)) ¢ R?
Find

For each class j € {1,...,k}
> Class prior ¢; = p(y = j)

» Class-conditional Gaussian density p(x |y = j)
(find p; and %)

Gaussian Discriminant Analysis Estimation

¢ = fraction of examples with label j
p; = mean of examples with label j

Y; = covariance of examples with label j
1 & ;
%= z; 1{y® = j}
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