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K-Means Problem

Given

I Feature vectors x(1)
, . . .x

(m) 2 Rn

I Desired number of clusters k

Find

I Cluster centers µ1, . . . , µk 2 Rn

I Cluster labels c(i) 2 {1, 2, . . . , k}

Minimize

J(c, µ) =

mX

i=1

||x(i) � µc(i) ||
2

K-Means Algorithm

1. Initialize µ1, µ2, . . . , µk 2 Rn randomly

2. Repeat until convergence

I For all points i, assign x

(i) to closest cluster center

c

(i)  argminj ||x(i) � µj ||2

I For all clusters j, set µj = average of currently assigned points

µj  
Pm

i=1 1{c(i) = j}x(i)

Pm
i=1 1{c(i) = j}

K-Means Example

Initialize cluster centers arbitrarily:
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K-Means Example

Assign points:
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K-Means Example

Update centers:
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K-Means Example

Assign points:
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K-Means Example

Update centers:
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K-Means Example

Assign points:
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K-Means Example

Update centers:
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K-Means Example

Assign points:
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K-Means Example

Update centers:

(i)
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K-Means Convergence

J(c, µ) =

mX

i=1

||x(i) � µc(i) ||
2

Not hard to show that

1. µ updates minimize J while holding c fixed

2. c updates minimize J while holding µ fixed

3. The algorithm converges



“Soft” clustering

Often desirable to fractionally assign points to clusters
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“Soft” clustering

There’s something Bayesian happening here. . .

Generative Model: Mixture of Gaussians

I First choose cluster: p(c(i) = j) = �j

I Then generate x

(i) from conditional distribution p(x

(i) | c(i))
I Hide cluster assignments
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p(x

(i) | c(i) = k) follows a Gaussian distribution with parameters
µk and ⌃k

Aside: Multivariate Gaussian Distribution

p(x;µ,⌃) =
1

(2⇡)

n/2|⌃|1/2
exp

⇣
� 1

2

(x� µ)T⌃�1
(x� µ)

⌘

Describes random vector x 2 Rn with

I Mean vector µ 2 Rn

I Covariance matrix ⌃ 2 Rn⇥n

I
P (x 2 A) =

Z

A
p(x;µ,⌃)dx

Examples

Mul$variate+Gaussian+
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can then use Bayes rule to derive the posterior distribution on y given x:

p(y|x) =
p(x|y)p(y)

p(x)
.

Here, the denominator is given by p(x) = p(x|y = 1)p(y = 1) + p(x|y =
0)p(y = 0) (you should be able to verify that this is true from the standard
properties of probabilities), and thus can also be expressed in terms of the
quantities p(x|y) and p(y) that we’ve learned. Actually, if were calculating
p(y|x) in order to make a prediction, then we don’t actually need to calculate
the denominator, since

argmax
y

p(y|x) = argmax
y

p(x|y)p(y)

p(x)

= argmax
y

p(x|y)p(y).

1 Gaussian discriminant analysis

The first generative learning algorithm that we’ll look at is Gaussian discrim-
inant analysis (GDA). In this model, we’ll assume that p(x|y) is distributed
according to a multivariate normal distribution. Let’s talk briefly about the
properties of multivariate normal distributions before moving on to the GDA
model itself.

1.1 The multivariate normal distribution

The multivariate normal distribution in n-dimensions, also called the multi-
variate Gaussian distribution, is parameterized by a mean vector µ ∈ Rn

and a covariance matrix Σ ∈ Rn×n, where Σ ≥ 0 is symmetric and positive
semi-definite. Also written “N (µ,Σ)”, its density is given by:

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−
1

2
(x− µ)TΣ−1(x− µ)

)

.

In the equation above, “|Σ|” denotes the determinant of the matrix Σ.
For a random variable X distributed N (µ,Σ), the mean is (unsurpris-

ingly) given by µ:

E[X ] =

∫

x

x p(x;µ,Σ)dx = µ

The covariance of a vector-valued random variable Z is defined as Cov(Z) =
E[(Z − E[Z])(Z − E[Z])T ]. This generalizes the notion of the variance of a

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ,Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
looks like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Let’s look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:

Examples:+Symmetric+
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Σ =

[

1 0
0 1

]mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with ,

The left-most figure shows a Gaussian with mean zero (that is, the 2
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-

. The middle figure shows the density of a Gaussian with
; and in the rightmost figure shows one with , Σ = 2I.



Examples:+Non9Symmetric+
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real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ,Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
looks like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Let’s look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:
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real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ,Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
looks like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Let’s look at some more examples.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:
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Here’s one last set of examples generated by varying Σ:

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

The plots above used, respectively,

Σ =

[

1 -0.5
-0.5 1

]

; Σ =

[

1 -0.8
-0.8 1

]

; .Σ =

[

3 0.8
0.8 1

]

.

From the leftmost and middle figures, we see that by decreasing the diagonal
elements of the covariance matrix, the density now becomes “compressed”
again, but in the opposite direction. Lastly, as we vary the parameters, more
generally the contours will form ellipses (the rightmost figure showing an
example).

As our last set of examples, fixing Σ = I, by varying µ, we can also move
the mean of the density around.
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The figures above were generated using Σ = I, and respectively

µ =

[

1
0

]

; µ =

[

-0.5
0

]

; µ =

[

-1
-1.5

]

.

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ,Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
looks like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Let’s look at some more examples.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.05

0.1

0.15

0.2

0.25

The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:

Mean+

•  Change+mu:+move+mean+of+density+around+
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Here’s one last set of examples generated by varying Σ:
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The plots above used, respectively,

Σ =

[

1 -0.5
-0.5 1

]

; Σ =

[

1 -0.8
-0.8 1

]

; .Σ =

[

3 0.8
0.8 1

]

.

From the leftmost and middle figures, we see that by decreasing the diagonal
elements of the covariance matrix, the density now becomes “compressed”
again, but in the opposite direction. Lastly, as we vary the parameters, more
generally the contours will form ellipses (the rightmost figure showing an
example).

As our last set of examples, fixing Σ = I, by varying µ, we can also move
the mean of the density around.
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The figures above were generated using Σ = I, and respectively

µ =

[
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; µ =
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; µ =
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-1.5
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Here’s one last set of examples generated by varying Σ:
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The plots above used, respectively,

Σ =

[

1 -0.5
-0.5 1

]

; Σ =

[

1 -0.8
-0.8 1

]

; .Σ =

[

3 0.8
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From the leftmost and middle figures, we see that by decreasing the diagonal
elements of the covariance matrix, the density now becomes “compressed”
again, but in the opposite direction. Lastly, as we vary the parameters, more
generally the contours will form ellipses (the rightmost figure showing an
example).

As our last set of examples, fixing Σ = I, by varying µ, we can also move
the mean of the density around.
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The figures above were generated using Σ = I, and respectively

µ =
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; µ =

[
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Mixture of Gaussians Problem
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Given feature vectors x(1)
, . . . ,x

(m), number of “clusters” k, find:

I Cluster priors �j = p(c = j)

I Gaussian parameters µj and ⌃j for each cluster

I Soft cluster assignments p(c(i) = j|x(i)
)

Mixture of Gaussians Algorithm

Repeat until convergence

1. Compute posterior probability that x(i) comes from cluster j

w

(i)
j = p(y

(i)
= j |x(i)

)

=

�j · p(x(i) | y(i) = j)

Pk
l=1 �l · p(x(i) | y(i) = l)

(Bayes rule)

2. Update parameters �j , µj , ⌃j using w

(i)
j values as weights

Update Parameters

�j = average weight assigned to class j
µj = weighted mean for class j
⌃j = weighted covariance for class j

�j =
1

m

mX

i=1

w

(i)
j

µj =

Pm
i=1w

(i)
j x

(i)

Pm
i=1w

(i)
j

⌃j =

Pm
i=1w

(i)
j

Pm
i=1(x

(i) � µj)(x
(i) � µj)

T

Pm
i=1w

(i)
j



Mixture of Gaussians

Initialize cluster parameters:

(a)−2 0 2

−2

0

2
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Mixture of Gaussians

Update soft assignments:

(b)−2 0 2

−2

0

2
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Mixture of Gaussians

Update cluster parameters:

(c)

L = 1

−2 0 2

−2

0

2
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Mixture of Gaussians

Next iteration:

(d)

L = 2

−2 0 2

−2

0

2
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Mixture of Gaussians

And so on:

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2
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Mixture of Gaussians Convergence

I This algorithm converges

I Can be formally justified as an instance of the Expectation
Maximization (EM) algorithm

I For your next ML class!



The End

That’s it for new material!

Quiz Topics

I SVMs

I margin, functional margin, support vectors
I Kernel trick
I Gaussian kernel SVMs
I Role of C and �

I Neural nets

I Idea of back-prop (chain rule)
I Application of back-prop at level of movie recommendations

and logistic regression

Quiz Topics

I Movie recommendations
I PCA

I
X ⇡ ZW

T

I Model interpretation and use

I Bayes

I Bayes rule
I Application of Bayes rule (e.g. biased coin calculation)
I Naive Bayes
I Conceptual understanding of discriminiative vs. generative

I K-means

Extra Slides

. . .

Gaussian Distribution in 1D

p(x;µ,�

2
) =

1p
2⇡�

2
exp

⇣
� (x� µ)

2

�

2

⌘

Describes continuous random variable X with

I Mean µ

I Standard deviation �

I
P (X 2 [a, b]) =

R b
a p(x;µ,�

2
)dx

Illustrate µ, �, area under curve

1D Gaussian Estimation

Given scalars x(1), . . . x(m)

Find best-fitting 1D Gaussian density

µ =

1

m

mX

i=1

x

(i)

�

2
=

1

m

mX

i=1

(x

(i) � µ)

2



Multivariate Gaussian Estimation

Given feature vectors x(1)
, . . .x

(m) 2 Rn

Find best-fitting Gaussian density

µ =

1

m

mX

i=1

x

(i)

⌃ =

1

m

mX

i=1

(x

(i) � µ)(x(i) � µ)T

Gaussian Discriminant Analysis

Generative model where p(x | y) is Gaussian

picture

Gaussian Discriminant Analysis Estimation

Given labeled training examples (x(1)
, y

(1)
), . . . (x

(m)
, y

(m)
) 2 Rn

Find

For each class j 2 {1, . . . , k}

I Class prior �j = p(y = j)

I Class-conditional Gaussian density p(x | y = j)

(find µj and ⌃j)

Gaussian Discriminant Analysis Estimation

�j = fraction of examples with label j
µj = mean of examples with label j
⌃j = covariance of examples with label j

�j =
1

m

mX

i=1

1{y(i) = j}

µj =

Pm
i=1 1{y(i) = j}x(i)

Pm
i=1 1{y(i) = j}

⌃j =

Pm
i=1 1{y(i) = j}

Pm
i=1(x

(i) � µj)(x
(i) � µj)

T

Pm
i=1 1{y(i) = j}


