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Bayes Rule

Let A and B be two events. Then:

P (A|B) =
P (A)P (B|A)

P (B)

(Derivation: apply definition of conditional probability twice)

Interpretation I

P (A|B) =
P (A)P (B|A)

P (B)

A = hypothesis

B = evidence

P (A): prior probability of hypothesis

P (A|B): posterior probability of hypothesis given evidence

P (B|A): likelihood of evidence given hypothesis

Example:

P (A|B) =
P (A)P (B|A)

P (B)

A = “has cancer”

B = “smokes”

What is P (has cancer|smokes)?

Can obtain from:

I P (smokes), P (has cancer) (population stats)

I P (smokes|has cancer) (stats from cancer patients)

Bayes Rule II

Suppose A1, . . . , Ak are competing hypotheses (events that
partition Ω)

P (Ai|B) =
P (Ai)P (B|Ai)

P (B)

Apply law of total probability to denominator to get a more useful
form:

P (Ai|B) =
P (Ai)P (B|Ai)

P (A1)P (B|A1) + . . . + P (Ak)P (B|Ak)

Interpretation II

P (Ai|B) =
P (Ai)P (B|Ai)

P (A1)P (B|A1) + . . . + P (Ak)P (B|Ak)

To compute the probability of any hypothesis after observing
evidence B, only need to know:

For all j:

I P (Aj) prior probability of hypotheses Aj

I P (B|Aj) likelihood of evidence under hypothesis Aj



Example

I One fair and one biased coin (0.75 probability heads)
I Select coin at random and flip many times

Problem: compute probability selected coin is biased

Exercise: MATLAB demo + guess posterior

Calculation

Observe HHTHT. What is probability coin is biased?

P (fair) = P (biased) = 1
2

P (HHTHT|fair) =
(
1
2

)5

P (HHTHT|biased) =
(
3
4

)3(1
4

)2

P (biased|HHTHT) =

P (biased)P (HHTHT|biased)

P (biased)P (HHTHT|biased) + P (fair)P (HHTHT|fair)

=
1
2 ·
(
3
4

)3(1
4

)2
1
2 ·
(
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4
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+ 1

2 ·
(
1
2

)5

Bayesian Classifiers

Observe vector of features x

Predict class y ∈ {0, 1, . . . , C} with highest probability given
features

ypred = argmaxy p(y|x)

Census Example

x1 x2 y
Age College? Vote? P (ω)

ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

p(vote = yes|age < 30, college = no) =
.03

.03 + 0.25

< 0.5

=⇒ predict vote = no

Aside: Random Variables

Discrete random variable (RV): mapping from outcome ω ∈ Ω to
finite set of values

X1(ω) ∈ {< 30,≥ 30}
X2(ω) ∈ {no, yes}
Y (ω) ∈ {no, yes}

Aside: Joint Distribution

Joint distribution of a set of random variables: table of
probabilities for all possible settings of those RVs

x1 x2 y
Age College? Vote? p(x1, x2, y)

< 30 no no 0.25
yes 0.03

yes no 0.04
yes 0.02

≥ 30 no no 0.33
yes 0.10

yes no 0.10
yes 0.13

Ω = {< 30,≥ 30} × {no, yes} × {no, yes}



Notation

Write RV as X instead of X(ω) when it is understood that X
maps from outcomes to values

Shorthand for joint distributions

p(x1, x2, y) := P (X1 = x1, X2 = x2, Y = y)

p(y|x) := P (Y = y|X = x)

p(x) := P (X1 = x1, . . . , Xn = xn)

And so on. . . (notation sometimes problematic, but we won’t
worry about this. . . )

Bayesian Classifiers

ypred = argmaxy p(y|x)

= argmaxy

p(y)p(x|y)

p(x)
Bayes rule

= argmaxy p(y)p(x|y) drop denominator

Need to know p(y), p(x|y) for each class

Example. Discuss training

Problem

p(x|y) may be too big to represent or estimate

Example: text classification

I x = (x1, . . . , x5000)

I xj : does word j appear in document?

I 25000 table entries to store p(x1, . . . , x5000|y = 1)

I Similarly impossible to estimate

Naive Bayes

Assume features are independent given class:

p(x1, . . . , xn|y) = p(x1|y)p(x2|y) . . . p(xn|y)

=

n∏

i=1

p(xi|y)

Predict:

ypred = argmaxy p(y)

n∏

j=1

p(xj |y)

Training

Given: training examples (x(1), y(1)), . . . , (x(m), y(m)), need to
estimate

I Class priors:

p(y = 0), p(y = 1), . . . , p(y = C)

I Class-conditional distribution of feature xj

p(xj = 0 | y = c)

p(xj = 1 | y = c)

p(xj = 2 | y = c)

...

p(xj = k | y = c)

(C = # classes; k = # values of xj)

Training: Class Prior

Class priors:

p(y = c) =

∑m
i=1 1{y(i) = c}

m

(fraction of training examples with class c)

Example



Training: Class-conditional Distribution

Conditional probability that xj = v given class c:

p(xj = v | y = c) =

∑m
i=1 1{x

(i)
j = v, y(i) = c}

∑m
i=1 1{y(i) = c}

(Fraction of examples with xj = v among those in class c)

Example

Laplace Smoothing

Conditional probability that xj = v given class c:

p(xj = v | y = c) =
1 +

∑m
i=1 1{x

(i)
j = v, y(i) = c}

k +
∑m

i=1 1{y(i) = c}

(Avoid zero probabilities: pretend there is an extra training
example of each type)

Example

Additional Topics

I Discretization of continuous features

I Variations of Naive Bayes for text


