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Bayes Rule

Let A and B be two events. Then:

P(A|B) = —L 212

(Derivation: apply definition of conditional probability twice)

Interpretation |

A = hypothesis

B = evidence

P(A): prior probability of hypothesis

P(A|B): posterior probability of hypothesis given evidence
P(BJA): likelihood of evidence given hypothesis

Example:

A = "has cancer”

B = "smokes"

What is P(has cancer|smokes)?

Can obtain from:

» P(smokes), P(has cancer) (population stats)

» P(smokes|has cancer) (stats from cancer patients)

Bayes Rule Il
Suppose Ay, ..., Ay are competing hypotheses (events that
partition )
_ P(A)P(B|A:)
P(4;|B) = ~PB)
Apply law of total probability to denominator to get a more useful
form:
P(A;)P(B|A)
P(A;|B) =
(4:1B) P(A1)P(B|A1) + ...+ P(Ay)P(B|Ax)

Interpretation |l

P(A;)P(B|A;)
(A1)P(B|A1) + ...+ P(Ap) P(B|Ag)

P(4i|B) =

To compute the probability of any hypothesis after observing
evidence B, only need to know:

For all j:

> P(A;) prior probability of hypotheses A;
» P(B|A4;) likelihood of evidence under hypothesis A;




Example

» One fair and one biased coin (0.75 probability heads)
» Select coin at random and flip many times

Problem: compute probability selected coin is biased

Exercise: MATLAB demo + guess posterior

Calculation

Observe HHTHT. What is probability coin is biased?

P(fair) = P(biased) = 1
P(HHTHTfair) = (!
P(HHTHT|biased) = (:

P(biased HHTHT) =
P(biased) P(HHTHT |biased)
P(biased) P(HHTHT |biased) + P(fair) P(HHTHT]|fair)
1. (3
(1) (*)
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Bayesian Classifiers

Observe vector of features x

Predict class y € {0,1,...,
features

C'} with highest probability given

Ypred = argmax, p(ylx)

Census Example

Tl i) Yy

Age College? Vote? P(w)

wy | <30 no no 0.25

w2 yes 0.03

w3 yes no 0.04

wy yes 0.02

ws | > 30 no no 0.33

we yes 0.10

wy yes no 0.10

wg yes 0.13
p(vote = yes|age < 30, college = no) = _
' .03+ 0.25

< 0.5
= predict vote = no

Aside: Random Variables

Discrete random variable (RV): mapping from outcome w € Q to
finite set of values

X (w) € {<30,> 30}
Xa(w) € {no, yes}
Y (w) € {no, yes}

Aside: Joint Distribution

Joint distribution of a set of random variables: table of
probabilities for all possible settings of those RVs

Ty T2 )

Age College? Vote? p(z1,22,y)

<30 no no 0.25

yes 0.03

yes no 0.04

yes 0.02

> 30 no no 0.33

yes 0.10

yes no 0.10

yes 0.13

Q = {< 30,> 30} x {no,yes} x {no, yes}




Notation

Write RV as X instead of X (w) when it is understood that X
maps from outcomes to values

Shorthand for joint distributions

p(z1,22,y) = P(X1 =21, X2 = 22,Y =)
plylr) == P(Y =y|X =2)
p(x):=P(X1=x1,...,Xn = Tp)

And so on... (notation sometimes problematic, but we won't
worry about this. . .)

Bayesian Classifiers

Ypred = argmax, p(y\x)
p(y)p(xly)

Yop(x)

= argmax, p(y)p(x|y) drop denominator

= argmax Bayes rule

Need to know p(y), p(x|y) for each class

Example. Discuss training

Problem

p(x|y) may be too big to represent or estimate

Example: text classification

> x = (r1,...,25000)
> x;: does word j appear in document?
» 25000 t3ble entries to store p(z1, ..., T5000|y = 1)

» Similarly impossible to estimate

Naive Bayes

Assume features are independent given class:

p(T1,. . 2nly) = p@1ly)p(22ly) - . . p(nly)
=[] p(ily)
i=1

Predict:

n

Ypred = argmax, p(y) [ [ p(z;ly)
j=1

Training

Given: training examples (x™), y(1), ... (x(™), y(™), need to
estimate

» Class priors:
ply=0),ply=1),...,p(y =0C)
» Class-conditional distribution of feature x;

p(zj =0ly =c)
p(z;=1ly=c)

plzj=2[y=c)
p(zj =kly=c)

(C' = # classes; k = # values of z;)

Training: Class Prior

Class priors:

Sy = ¢}

ply =) = ==L

(fraction of training examples with class ¢)

Example




Training: Class-conditional Distribution

Conditional probability that z; = v given class c:

S ) =0,y = ¢
2?;1 1{?J(i) =c}

(Fraction of examples with z; = v among those in class c)

plzj=vly=c)=

Example

Laplace Smoothing

Conditional probability that z; = v given class c:

) — ]y o) = LR L =0y =)
plzj=v|y=c) = .

re s h S 1y =]

(Avoid zero probabilities: pretend there is an extra training
example of each type)

Example

Additional Topics

» Discretization of continuous features

» Variations of Naive Bayes for text




