Methodology: Assessment and Cross-Validation

Dan Sheldon

November 18, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

First story

- USPS uses a classifier to distinguish 4 from 9
- Pays \$1 for every mistake
- How much money should it budget for 2015?
- Model assessment (validation): estimate prediction error on future unseen data (generalization)

Second story

- USPS uses regularized logistic regression to prevent overfitting in its classifier
- ► What value of λ will lead to the model with the least prediction error?
- Model comparison (selection): estimate prediction error for purpose of selecting the best model

Two goals

Model assessment: estimate prediction error on future unseen data (generalization)

Model comparison: estimate prediction error for purpose of selecting the best model

Two goals

Model assessment: estimate prediction error on future unseen data (generalization)

Model comparison: estimate prediction error for purpose of selecting the best model

Can't do either of these with data used to train the model

Data-Generating Mechanism

- Assumption: training data representative of future unseen data
- ► Formally, training examples and future test examples drawn *independently* from same probability distribution *P*

$$(\mathbf{x}^{(i)}, y^{(i)}) \sim \mathcal{P}$$

 $(\mathbf{x}, y) \sim \mathcal{P}$

- How to think of this
 - huge bag of input-output pairs (\mathbf{x}, y) ("nature")
 - m training examples pulled out randomly
 - future data drawn also pulled out randomly
 - (picture on board)

In an Ideal World

If we are "data rich", this is what we would do:

- Validation set: labeled data reserved to compare models
- ▶ Test set: labeled data reserved to assess future performance

E.g., 50/25/25 split

In an Ideal World

If we are "data rich", this is what we would do:

- Validation set: labeled data reserved to compare models
- ▶ Test set: labeled data reserved to assess future performance

E.g., 50/25/25 split

Warning: Terminology of validation/test not always consistently used

The Dilemma: Train vs. Test Size

What if you only have 100 training examples? 50? 10?

The dilemma

- More training data \rightarrow more accurate classifier
- More test data \rightarrow better estimate of generalization accuracy

Cross-Validation

(Assume assessment for now... how much will USPS pay?)

Beautiful and simple solution to train/test size dilemma:

- ▶ Split data in k equal-sized "folds" (usually 2, 5, 10)
- ▶ For each fold, test on that fold while training on all others:

1	2	3	4	5
Train	Train	Validation	Train	Train

Estimate accuracy by averaging over all folds

Example

5-fold cross-validation

	Train folds	Test folds	Accuracy
1 2345	2,3,4,5	1	85%
1 <mark>2</mark> 345	1,3,4,5	2	83%
12 <mark>3</mark> 45	1,2,4,5	3	91%
123 <mark>4</mark> 5	1,2,3,5	4	88%
1234 <mark>5</mark>	1,2,3,4	5	84%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Average accuracy = 88.2%

Discussion

What if you need to do both model comparison and assessment?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What if you need to do both model comparison and assessment?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Fancier methods:

- One fold for validation (e.g. train/valid/test = 3/1/1)
- Nested cross-validation