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Topics

Multivariate linear regression
> Model

» Cost function

v

Normal equations

Gradient descent

v

v

Features
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Book Data

Can we predict better with multiple features?

Width  Thickness Height + Pages Hardcover | Weight

8 1.8 10 1152 1 4.4
8 0.9 9 584 1 2.7
7 1.8 9.2 738 1 3.9
6.4 1.5 9.5 512 1 1.8
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Book Data

Can we predict better with multiple features?

Width  Thickness Height + Pages Hardcover | Weight

8 1.8 10 1152 1 4.4
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Training data

x( is a feature vector



Multivariate Linear Regression

> Input: x € R”
Output: y € R
Model (hypothesis class): ?

v

v

Cost function: ?

v



Model

he(x)



Model

hg(X) =0¢g+ 011 + 02290+ ...+ 6,2,



Model

hg(X) =0¢g+ 011 + 02290+ ...+ 6,2,



Model

hg(X) =0¢g+ 011 + 02290+ ...+ 6,2,

Tn
he(x) = 0Tx =x70

(Augment feature vector with 1)



Geometry of high dimensional linear (affine) functions

n-dimensional function hg : R® — R

hg(x) = 01x1 + baza + ... + Opxy (linear)
he(x) = 0y + 0121 + B0 + ... + Oy (affine)

Three facts on board
1. Contours = hyperplanes
2. Gradient = 0 (a vector, orthogonal to contours)

3. The norm ||@|| can be interpreted as slope



The Problem

Find 6 such that

y(l) ~ hg (X(Z) ) )

i=1,...



The Problem

Find 6 such that

y D~ he(x®),  i=1,...

1) 1 xgl) azgl)
y(m) 1 xgm) :L'gm)
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The Problem

Find 6 such that

y<l) ~ hg (X(Z) ) )

1 xgl)
|1 2P
1 xgm)

i=1,...



Inputs: Data Matrix and Label Vector

1 xgl) mgl)
2 2
X — 1 xg ) l’é )

1 xgm) :):(2m)

Data matrix

2V 4@
(2) ©)
x%"” y(m)

Label vector

Width  Thickness Height +# Pages Hardcover | Weight
8 1.8 1152 1 4.4
8 0.9 584 1 2.7
7 1.8 9.2 738 1 3.9
6.4 1.5 9.5 512 1 1.8



[[lustration

Find @ such that y() ~ hg(X(i)), 1=1,....,m

1

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 3



Cost Function



Cost Function

m

Exercise: write this succinctly in matrix-vector notation



Cost Function

Answer:
J(0) = =(X0—y) (X0 —y)



The Problem

Given training data X and y, find @ to minimize cost function:

7(0) = 5(X60 —y)"(X0 ~y)



Solution 1: Normal Equations

Normal equations
0=(XTx)'xTy

Heuristic derivation:



Proper Approach

> Set all partial derivatives to zero

J (9)

> Solve a system of n + 1 linear equations for 6, . ..

» Tedious, but leads to normal equations



Matrix Calculus

Succinct (and cool!) way to solve for normal equations:

a4

0=VJ0) = -

(X6 —y)' (X6 —y)

| =



Matrix Calculus

Succinct (and cool!) way to solve for normal equations:

0=V.J(6) — %

0 = (X0-y)'X

(X6 —y)' (X6 —y)

QU
| =



Matrix Calculus

Succinct (and cool!) way to solve for normal equations:
d T
0=VJ(0) = =5 5(X0-y)(X0-y)

= (X60-y)'X
= X'(X6-y)

QU
| =



Matrix Calculus

Succinct (and cool!) way to solve for normal equations:

d
0=VJO) = -5 (X0 —y)" (X0 -y)
0 = (X60-y)TX
0 = XT(X0-y)
xXTxe = XTy

| =



Matrix Calculus

Succinct (and cool!) way to solve for normal equations:

d
0=VJ(O) = -
0 = (X0-y)'X
0 = XT(X0-y)
XTxeo XTy
0 = (XTx)'xTy

(X6 —y)' (X6 —y)

QU
| =

(Note: not responsible vector derivative in first line, but should
understand rest of derivation.)



Solution 2: Gradient Descent

1. Initialize 09, 01, . .., 0, arbitrarily

2. Repeat until convergence

0

szﬁj—a—J(B), jIO,...

00,



Solution 2: Gradient Descent

1. Initialize 09, 01, . .., 0, arbitrarily

2. Repeat until convergence

0 .
Partial derivatives:
0 S ) (D)

5;7(®) = L(hotx®) = )]



Vectorized Gradient Descent

1. Initialize @ arbitrarily
2. Repeat until convergence
0—60-—aX'(X0-y)

~—_——
vJ(8)



Feature Normalization

» Demo: Problem 3 from HWO

» Advice: normalize your features so they have the similar
numeric ranges!



Feature Normalization

For each feature j, compute the mean p; and standard deviation
o; of that feature over training set.




Feature Normalization

For each feature j, compute the mean p; and standard deviation
o; of that feature over training set.

m

1 i 1 i

i=1 i=1

Then, subtract mean and divide by standard deviation:

(]

e (2 = )/



Feature Normalization

For each feature j, compute the mean p; and standard deviation
o; of that feature over training set.

m

1 1 i
%Z , 05 = EZ@?‘M)Q

=1 i=1
Then, subtract mean and divide by standard deviation:

29 (xgz)

; — 15)/0;

Effect: adjust columns of data matrix to have mean zero and
standard deviation equal to one. E.g.

94 .99 -0.22 -1
116 1 |~ | 109 O
83 1.01 —-0.87 1



Feature Normalization

Example: cost function contours before and after normalization




Feature Design

It is possible to fit nonlinear functions using linear regression:

(1,2, 23) = (21, 22, 903@%,10%(902),561 + x3)

Approaches
» Try standard transformations

» Design features you think will work



Polynomial Regression

-1 -0.5 0.5 1

X Or



