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As long as a branch of science offers an abundance of problems,
so long it is alive; a lack of problems foreshadows extinction or
the cessation of independent development.

— DAVID HILBERT, ilom a lecture delivered before the
International Congress of Mathematicians at Paris in 1900.

When?

— JURIS HARTMANIS

The P versus NP question grew out of developments in
mathematical logic and electronic technology during the
middle part of the twentieth century. It is now consid-
ered to be one of the most important problems in con-
temporary mathematics and theoretical computer sci-
ence. The literature on this subject is diverse but not
huge — it is possible for the student to acquaint himself
with all of the important relevant work in a semester or
two. In writing thw article, I have attempted to orga-
nize and describe this Literature, including an occssiom-d
opinion about the most fruitful directions, but no tech-
nical details.

In the first half of this century, work on the power of
formal systems led to the formalization of the notion of
algorithm and the realization that certain problems are
algorithmically unsolvable. At around this time, fore-
runners of the programmable computing machine were
beginning to appear. As mathematicians contemplated
the practical capabilities and limitations of such devices,
computational complexity theory emerged from the the
ory of algorithmic unsolvability.

Early on, a particular type of computational task be-
came evident, where one is seeking an object which lies

*Supported by NSF Grant 8912586 CCR and Air Force Con-
tract AFOSR S9-0271.
Permission to copy without fee all or part of thie material ie
granted provided that the copiae ara not mada or distributed for
direct commercial advantsge, the ACM copyright notice and the
titla of the publication and ite date appear, and notice is givan
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
24th ANNUAL ACM STOC - 5/92/VICTORIA, B.C., CANADA
@1992 ACM 0.8$791.51 2.7/9210004/0603 ...$~ .5Q

somewhere in a large space of possibilities. Comput-
ers may greatly speed up the search, but the extremely
large spaces that really do occur in cases of interest
would still require geologic time to search exhaustively
even on the fastest machines imaginable. The only way
to solve such cases practically would be to find a method
which avoided searching by brute force. Roughly speak-
ing, the P versus NP question asks whether, in general,
such a method exists.

This question has attracted considerable attention.
Its intuitive statement is simple and accessible to non-
specialists, even those outside of science. By embracing
issues in the foundations of mathematics as well as in the
practice of computing, it gains something in character
beyond that of a mere puzzle, but rather with appar-
ently deeper significance and broader consequences.

Church and Turing, in their work on Hilbert’s
entschiedungsproblem, have shown that testing whether
an assertion has a proof is idgorithmically unsolvable.
The P versus NP question can be viewed as a more fini-
tary version of the entschiedungsproblem. Suppose we
wish to test whether an assertion has a short proof. Of
course this can be solved by a brute force algorithm, but
can it be done efficiently?

The entschiedungsproblem does have practical im-
portance in addition to it’s philosophical signitlcance.
Mathematical proof is a codification of more generaJ
human reasoning. An automatic theorem prover would
have wide application within computer science, if it op
erated efficiently enough. Even though this is hope
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less in general, there may be important special cases
which are solvable. It would be nice if Church’s or Tur-
ing’s proofi gave us some information about where the
easier cases might lie. Unfortunately, their arguments
rest on “self-reference,” a contrived phenomenon which
never appears spontaneously. This does not tell us what
makes the problem hard in interesting cases. Conceiv-
ably, a proof that P is not equal to NP would be more
informative.

2 History

Among the many equivalent formulations of the P ver-
sus NP question, the following one is particularly simple
to describe.

Is them. an algorithm which, when presented with an
undimct ed graph, determines whether it contains a com-
plete subgraph on hay its nodes, and whose running
time is bounded above by a polynomial in the number
of nodes?

By the term algorithm we mean a finite set of in-
structions on any of a number of related models of com-
putation, e.g., the multi-tape Turing math inc. The
term P, for Polynomial time, refers to the class of lan-
guages languages decidable on a Turing machine in time
bounded above by a polynomial. It is invariant over
reasonable computational models. NP, for Nondeter-
ministic Polynomial time, refers to the analogous class
for nondeterministic Turing machines. NP consists of
those languages where membership is verijiabie in poly-
nomial time. The question of whether P ia equal to NP
is equivalent to whether an NP-complete problem, such
as the clique problem described above, can be solved in
polynomial time. The books by Hopcroft and Unman
[HU79] and Garey and Johnson [GJ79] contain excellent
introductions to this subject.

2.1 Brute Force Search

The idea of using brute force search to solve certain
problems is certainly very old. In principle, many nat-
urally occurring problems may be solved in this way,
though if the search space is Isxge, this becomes obvi-
ously impractical. People realized this difficulty in par-
ticular cases, and occasionally were able to find alterna-
tive methods. One of the early accomplishments of the
theory of algorithms wss to recognize brute force search
as a phenomenon independent of any specitic problem.
A number of researchers, working separately, hit upon
this idea.

Godel, in a recently discovered 1956 letter to von

Neumann,l wrote about the issue in a remarkably mod-
ern way, formulating it in terms of the time required
on a Turing machine to test whether a formula in the
predicate calculus has a proof of length n. He also ssked
how much we csn improve upon brute force, in general,
when solving combinatorial problems. It is not known
whether von Neumann, who was dying of caacer at the
time, thought about Godel’s letter or responded to it.
Von Neumann does appear to have had some awareness
of the undesirability of brute force search. A couple of
years earlier he had written a paper giving an algorithm
avoiding brute force search for the assignment problem
~053] .
Edmonds [Ed65] gave the first lucid account of the

issue of brute force search appearing in western litera-
ture, The main contribution of his paper was a polyn~
mial time algorithm for the maximum matching prob-
lem. This algorithm itself still stands ss a beautiful ex-
ample of how brute force can sometimes be avoided, if
one is clever enough. Edmonds felt the need to explain
why his was a result at all, when there is an obvious
finite algorithm for solving the problem. In so doing he
discussed the problem of brute force search in general
as an algorithmic method.
In the 1950’s, researchers in the Soviet Union were

aware of the issue of brute force search, called pewbor
in Russian. Yablonski ~a59a] described the issue for
general problems and focused on the specific problem
of constructing the smallest circuit for a given function.
Curiously, in a later paper ~a59b] he obscured the issue
by claiming to prove that perebor is unavoidable for this
problem. That paper, whose resin theorem makes no
reference to the notion of algorithm, certainly did not
do as claimed, at least in the sense we would mean it
today. Trakhtenbrot sheds some light on this murky
situation in his survey of early Russian work on perebor
[Tr84].

2.2 P and NP

Several early papers, notably those of Rabin ~a60],
Hartmanis and Stearns [HS65], and Blum [B167], pro-
posed and developed the notion of measuring the com-
plexity of a problem in terms of the number of steps
required to solve it with an algorithm. Cobham [C064],
Edmonds [Ed65], and Rabin [Ra66] suggested the class
P ss a reasonable approximation to the class of ‘realis-
tically solvable” problems,
The importance of the class NP stems from the large

number of computational problems contained within.
Cook [C071] and Levin ~e73] first defined this class and
proved the existence of complete problems. Somewhat

1A tr~at.jon of G6del’s letter along with quotatims ~m @
number of historical papers are included in an appendix.
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earlier, Edmonds @d65b] captured the essence of the
notion of NP with his “good characterization” whereby
an assistant can convince his supervisor of the solution
to a problem. Since the solution may be either positive
or negative in the case of a problem involving language
membership, Edmonds’s notion is generally associated
with the class NP n CONP. Karp [Ka72] demonstrated
the surprisingly wide extent of NP-completeness when
he showed that many familiar problems have this prop-
ert y.

2.3 Explicit Conjecture

Cook first precisely formulated the P versus NP conjec-
ture in his 1971 paper. More or less close approximw
tions to it appeared somewhat earlier in the papers of
Edmonds, Levin, Yablonski,

3 Status

3.1 Diagonalization

and in Godel’s letter,

and Relativization

Rabin [Ra60] and Hartmanis and Stearns [HS65] proved
the existence of decidable problems with arbitrarily high
computational complexity. They used a classical diag-
onalization, giving an algorithm which, by design, ac-
cepts a language differing from any language of low com-
plexity. This technique allows us to conclude, for ex-
ample, that there exist problems requiring exponential
time. Problems constructed in this way are artificial,
having no meaning or significance outside of their role
in this theorem. Meyer and Stockmeyer [MS72] used
this theorem to demonstrate natural problems provably
outside of P by showing that they are complete for high
complexity classes.

A priori, it might seem possible to use diagonalization
to prove that some problem in NP requires exponential
time. One would give a nondeterministic polynomial
time Turing machine which, over the course of its in-
puts, has an opportunity to run each of the determin-
istic polynomial time Turing machines and arrange to
accept a differing language. This simple argument fails
because the nondeterministic machine, running in some
fixed n~ time, is not able to simulate a deterministic
machine whose time bound is a larger polynomial. Pos-
sibly there is a more clever nondeterministic simulation
of the deterministic machine which would allow the non-
deterministic machine to carry out the diagonalization
process. The method of relativization, described below,
suggests that this will not be straightforward.

In a relativized computation the machine is provided
with a set, called an oracle, and the capability to deter-
mine membership in this set without cost. For each or-
acle, there is associated the relativized complexity class

of languages efficiently computable in the presence of
that oracle, Baker, Gill, and Solovay [BGS75] demon-
strated an oracle relative to which P is equal to NP
and another relative to which they differ. A step-by-
step simulation of one machine by another, such as that
used in a conventional diagonalization, still succeeds in
the presence of an oracle, as the simulator needs only
query the oracle whenever the simulated machine does.
Any argument which relies only on step-by-step simula-
tion to collapse or separate P and NP would thus also
apply in the presence of any oracle. As this would con-
tradict the BGS theorem, step-by-step simulation will
not be sufficient to settle the question.
The above is a heuristic argument as the notion of

“step-by-step simulation’) is not precisely defined. In
recent papers, Lund, Fortnow, Karloff, and Nisan, and
Shamir ~FKN90,Sh90] introduced a new type of sim-
ulation to prove equivalence for the complexity clssses
1P snd PSPACE. This simulation is not of the step-by-
step sort, but is rather indirect, and indeed does not
relativize to all oracles, as can be seen from the paper
of Fortnow and Sipser [FS88]. Conceivably, an indi-
rect simulation such se this could be combined with the
diagonalization method to separate certain complexity
classes.

3.2 Independence

Following the celebrated work of Godel and Cohen
we know that certain mathematical questions, such as
the Continuum Hypothesis, cannot be answered within
accepted formal systems of mathematical reasoning.
There has been speculation that the P versus NP ques-
tion may be unresolvable in a similar sense, This would
mean that if there were no polynomial time algorithm
for the clique problem, we would never be able to prove
the nonexistence. On the other hand if such an algo-
rithm were to exist, we would not be able to prove its
performance. I will mention here some of the literature
on independence, though I state at the outset my opin-
ion that our current inability to resolve this question
derives from insufficient brain power, rather than any
lack of power in our formal systems.

In a sense, the work on relativization already suggests
a sort of limited independence for the P versus NP ques-
tion. One might be able to formulate an axiomatic sys-
tem corresponding to pure recursive function theory, in
which the results of Baker, Gill, and Solovay presumably
would show that the question is unresolvable. However,
this would be very far from establishing independence
with respect to strong systems such as number theory
or set theory.

In the direction of stronger independence, a number
of papers have attempted to offer a beginning, notably:
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[HH76] giving an oracle under which the P versus NP
question is independent of set theory and [Li78,DL79,
Sa80,Bu86,CU88, BH91] establishing independence and
related results within weak fragments of number theory
or related systems. While I do not profess expertise in
this area, I doubt whether the results obtained so far in
this vein do more than raise the possibility of meaningful
independence.

3.3 Expressibility in Logic

Another potential application of mathematical logic
arises because it provides a different way of defining
familiar complexity classes. Fagin [Fa74] showed that
NP equals the class of languages representing struc-
tures definable by X; second-order sentences. He and
Jones and Selman [JS74] showed that the clam NEXP-
TIME equals the class of languages representing the col-
lections of cardinalities of universes of such structures.
Much earlier, Scholz [SC52] had considered such collec-
tions and asked whether they could be characterized
(see also Asser [As55]). Immerman [Im87] has extended
the correspondence with finite model theory to P, NL,
and other complexity classes, using first-order calculus
adorned with various operators. Hope that this recod-
ing into logic may help to settle questions in complexity
theory has been partly born out by Immerman’s dis-
covery ~m88] that NL=coNL, inspired by certain ob-
servations concerning first-order definability following
an earlier weaker result of [LJK87]. Szelepcs6nyi [S288]
independently obtained NL=coNL at around the same
time.

3.4 Restricted Systems

The difficulty in proving lower bounds on complexity
stems from the richness of the class of algorithms. One
approach that allows for partial progress is to restrict
the class of algorithms considered. There is a substan-
tial literature on bounds in various restricted models.
These fall into two categories, which may be called nat-
ural models and handicapped models. In the former, a
model is selected which allows only for operations spe-
cially tailored to the problem at hand. This includes
sorting models, polynomial evaluation models, various
models oriented towards data structures, and others.
In the latter, we seek to maintain the generality of the
model, but weaken it sufficiently so that an interesting
lower bound is obtainable. Both approaches bear a con-
nection to separating complexity classes. We will treat
handicapped models shortly in the section on circuit
complexity. Here we consider restricted proof systems
as a form of natural model.

A proof system is a collection of axioms and rules of

inference. Resolution is a proof system for showing that
formulas sxe unsatisfiable. The axioms are the clauses
of the formula. In the inference rule, if clauses (Z A a)
and (Z A /3) are already present, then the new clause
(a A ~) maybe added. Unsatisfiability is proved when
the empty clause ia derived. The complexity of the proof
is the number of clauses added. Any unsatisfiable for-
mula has a resolution proof. Haken, solving a question
that had been open for many years, proved that there
are formulas requiring exponential size proofs [Ha85].
His work followed that of Tseitin [Ts62] who had solved
regular resolution, a further restricted form (see also
[Ga77]). Extended resolution, a generalized form, re-
mains open (see [C075]). Kozen [K077] considered other
proof systems and established lower bounds for them.

Proof systems are related to the class NP. If all
unsatisfiable formulas had polynomial length resolu-
tion proof% then it would easily follow that NP=coNP.
Haken’s result proves a special case of the NP#coNP
conjecture, showing that one particular nondeterminia-
tic algorithm is superpolynomial.

3.5 Circuit Complexity

Shannon [Sh49] proposed the size of Boolean circuits
as a measure of the complexity of functions. Savage
[Sa72] demonstrated a close relationship between cir-
cuit size snd time on a Turing machine. Circuits are
an appealing model of computation for proving lower
bounds. Their relatively simple definition renders them
more amenable to combinatorial analysis and allows for
natural variations and restrictions. This has been key
to achieving a number of important results. Mrmy re-
searchers consider circuit complexity to be the most vi-
able direction for resolving the P versus NP question.
We will survey recent work in this area, with an eye
towards this goal. The survey paper of Boppana and
Sipser [BS90] contains details of much of this work, de-
scribed in a readable fsshion. Dunne [Du88] and We-
gener [We87] have recently written books on Boolean
complexity.
A circuit (or straight line program) over a basis (typ-

ically AND, OR and NOT) is a sequence of instructions,
each producing a function by applying an operation
from the bssis to previously obtained functions. Ini-
tially, we start out with the functions naturally associ-
ated with each of the input variables. If each function is
used at most once, then the circuit is called a formula.
By Savage’s theorem, any problem in P has a poly-

nomial size family of circuits. Thus, to show that a
problem is outside of P it would suffice to show that its
circuit complexity is superpolynornial. A simple count-
ing argument shows that most Boolean functions on n
variables require exponential circuit size [Sh49,Mu56].
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The best lower bound we have to date for a problem in
NP is 3n – o(n), due to N. Blum [B184]. It does not
seem likely that the techniques used to get this result
will extend to significantly better bounds.

In [Va90], Valiant suggests that a direct attempt to
prove lower bounds on the size of Boolean circuits may
not be the right approach. There are natural algebraic
generalizations of certain NP-complete problems, such
as the Hamiltonian cycle problem, to an arbitrary ring.
We may also generalize circuits over the bssis AND, XOR

for such problems to arbitrary rings. Circuits which
solve the generalized problem form a proper subclass of
the circuits which merely work correctly in the Boolean
case. Aa such it may be essier to prove strong lower
bounds in this restricted csse. Valiant points out that
our failure to do this even then argues poorly for our
chances in the Boolean case. He suggests directing our
energies toward solving the algebraic csae first.

There are merits to this line or reasoning. One of the
impediments in the lower bounds area is a shortage of
problems of intermediate difficulty which lend insight
into the harder problems. The algebraic generalizations
may be important steps towards the Boolean goal. On
the other hand, I do not believe, ss Valiant argues, that
the algebraic caze is prerequisite. True, the algebraic
case is more restrictive, and hence “easier.’) The same
may be said for uniform models of computation ver-
sus nonuniform models. Nonuniform models, such ss
circuits, are more powerful than uniform models, such
m Turing machines, because the algorithm used may
change arbitrarily depending upon the length of the in-
put. Accordingly it may be more difficult to prove lower
bounds on these more powerful models. Nevertheless,
the “harder” problem may allow one to see more eas-
ily the heart of the matter, unobscured by unnecessary
features.

3.6 Bounded Depth Circuits

The next few sections treat handicapped variants of
the circuit model. By placing various restrictions on
structure, such as limiting the depth or restricting the
basis, it has been possible to obtain several strong
lower bounds. The first result of this kind is due to
Furst, Saxe, and Sipser [FSS84], and independently Aj-
tai [Aj83], who proved that certain simple functions,
such as the parity function, require superpolynomial cir-
cuit size if the depth is held fixed.
These two proofi of this theorem use different, though

related, methods. Furst, Saxe, and Sipser introduced
the notion of probabilistic restn”ction, a randomly se-
lected assignment to some of the variables. They showed
that for any circuit of the form AND of small ORS, the
circuit induced by a random restriction may likely be

put in the form OR of small ANDS. This interchange
allows adjacent levels of ORS to follow one another and
therefore to merge. A circuit may thus be simplified in-
ductively, while preserving the fact that it computes a
parity function. Ajtai’s argument is also an induction.
He showed that any set definable by a low depth circuit
is well approximated by a set of a very special form, a
disjoint union of large cylinders. A cylinder is a maximal
collection of strings which all agree on some collection
of variables. Clearly the parity function cannot be ap-
proximated in this way. His main combinatorial lemma
shows that the property of being well approximable is
closed under polynomial union and intersection.
Yao ~a85] combined probabilistic restriction with

a type of approximation to give an exponential lower
bound for constant depth parity circuits. H&tad [H&86]
simplified and strengthened this bound by improving
the core of the FSS argument using a type of analysis
of conditional probabilities developed by Yao.

Sipser [Si83] showed that there are functions com-
putable by depth d linear size circuits and which require
superpolynomial size for depth d– 1, by a technique very
similar to that used by FSS. Yao claimed without proof
an exponential bound for this depth hierarchy. Using
his simplified method, H&tad presented a proof of this
result.
Razborov [Ra87] introduced a method of obtaining

lower bounds on the size of limited depth circuits over
a larger basis. He proved that the majority function re-
quires exponential size for circuits having PARITY gates
as well as AND, OR, and NOT gates. He showed that
any set definable with a small, shallow circuit over this
basis is well approximated by a polynomial of low de-
gree over the two element field, and argues that the
majority function cannot be well approximated in this
way. Barrington [Ba86a] extended this to circuits with
MODq gates for any prime q instead of only PARITY (i. e.,
MOD2) gates. Smolensky [Sm87] further simplified and
improved this, showing that computing the MODP func-
tion requires exponential size when computed by shal-
low circuits having AND, OR, and MODq gates, for p and
q powers of different primes.

3.7 Monotone Circuit Size

A monotone circuit is one having AND and OR gates but
no negations. A function is monotone if x ~ y implies
$(z) < ~(Y) under the usual Boolean ordering. It is
essy to see that monotone circuits compute exactly the
class of monotone functions.
The first strong lower bound concerning this model

is due to Razborov [Ra85a], who proved that the
clique function hss superpolynomial monotone complex-
ity. Shortly thereafter Andreev [An85], using similar
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methods, proved an exponential lower bound, further
tightened by Alon and Boppana [AB87].

Razborov’s theorems on monotone and bounded
depth circuits, as well as the aforementioned proof of Aj-
tai, rely upon a technique which has come to be called
the approximation method. One of the difficulties in
attempting to analyze the computation of a circuit (r*
stricted or general) for the purposes of proving lower
bounds is that the subfunctions computed by the cir-
cuit may be complicated and hard to grasp. In the ap-
proximation method we show that the subfunctions are
in a certain sense near functions which are much sim-
pler. Take, for example Razborov’s lower bound for the
clique function. Consider any monotone circuit com-
puting this function. The plan is to adjust the result
of each of the AND and OR gates in such a way that
(1) each adjustment alters the result only slightly, while
(2) the adjusted output is far from the clique function.
This means that there must have been many adjust-
ments and hence many gates.

If general circuits computing monotone functions
could be converted into monotone circuits with only a
polynomial increase in size then strong monotone lower
bounds would yield separations of complexity classes in
general complexity theory. Razborov [Ra85b] showed
that this is not true when he used the approximation
to show that the that the problem of testing for a per-
fect matching requires superpolynornial size monotone
circuits. As this problem is in P [Ed65], we know that
it has polynomial size non-monotone circuits. Using a
simikar method, Tardos [Ta88] showed that there is a
monotone problem in P which requires exponential size
monotone circuits.
There is a class of functions where the monotone and

non-monotone complexities axe polynomially related.
These are the slice functions, introduced by Berkowitz
[Be82]. A function ~ is a slice finction if for some k
the wdue of ~(iz) is O when the number of 1s in z is
fewer than k, and the value is 1 when the number of 1s
in x is more than k. He showed that any general cir-
cuit computing a slice function may be converted into a
monotone function by adding only a polynomial num-
ber of gates. Hence if one were able to prove a strong
lower bound on the monotone circuit complexity of a
slice function then this would show that P#NP.

3.8 Monotone Circuit Depth

Circuits over the standard basis restricted to fan-in two
with O(log n) depth form an important subclass of the
polynomial size circuits. Such circuits axe equivalent in
power to polynomial size formulas. Proving that a lan-
guage is not definable with a circuit of this kind would
show that it is not in the class NCl. This would be

weaker than showing it is outside of P, but we are still
unable to do this for any language in NP.

Karchmer and Wigderson [KW88] gave a very nice
characterization of languages definable with such cir-
cuits, which may be useful in obtaining lower bounds
on depth. Let A be such a language. In the communi-
cation game for A, there are two players, one having a
string in A and the other having a string of the same
length not in A. The players communicate with each
other to find a position where their two strings differ.
The minimum number of bits that they require to do
this over all strings of length n is the complexity of the
game. Karchmer and Wigderson show that this exactly
equals the minimum circuit depth necessary for this lan-
guage.

A monotone variant of this game has played an im-
portant role in the discovery of lower bounds on mono-
tone circuit depth. If one demands in addition that the
found position is 1 for the string in A, then the com-
plexity of the game is the minimum monotone circuit
depth. This characterization of monotone depth com-
plexity led them to a Cl(logz n/ log log n) lower bound
on the monotone depth for the st-connectivity func-
tion. This was subsequently improved to fl(logz n) by
Boppana ~S90] who avoided the communication game
by arguing directly on the monotone circuit (indepen-
dently obtained by H&tad [unpublished]). Raz and
Wigderson [RW90] used the communication game to ob-
tain a linear depth lower bound for monotone circuits
computing the matching function. Their proof uses a
lower bound on the probabilistic communication com-
plexity of the set disjointness problem due to Kalyana-
sundamm and Schnitger [KS87] (simplified by Razborov
[Ra90a]). Because of this it seems that it will be diffi-
cult to phrsse the Raz-Wigderson argument without ap-
pealing to the communication game. Razborov [Ra90b]
and Goldmann and Hiistad [GH89] obtained additiomd
lower bounds using the communication game.

Grigni and Sipser [GS90] point out that many of
the results in monotone complexity can be viewed in
terms of monotone analogs, mP, mNP, etc., of the fa-
miliar complexity classes. Thus we already know that
mP#mNP [Ra85a], mP# {P n mono} [Ra85b], and
mNCl#mNL ~W88]. We use mono to designate the
class of all monotone languages. Grigni and Sipser
demonstrate that mNL#m-coNL using the technique
of [KW88]. This shows the inherently nonmonotone
nature of the Imrnerman-Szelep cseny simulation. In
a later paper [GS91], they strengthen the KW result
by separating mNCl from mL. There are a number of
open questions in monotone complexity, for example,
whether Barrington’s [Ba86a] beautiful simulation of
log-depth circuits by polynomial-size, width 5, branch-
ing programs, is inherently nonmonotone (see [GS90]).
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3.9 Active Research Directions

In this section we wilI examine a few directions which
appear to be plausible means of separating complex-
ity classes. These are the approximation meihod, which
has been used successfully in analyzing restricted circuit
models; the function composition method, which may be
useful to prove functions require large circuit depth; and
an infinite analog, which has led to lower bounds in the
bounded depth circuit model.
There is a possibility that the approximation method,

which has been used so successfully to obtain lower
bounds for monotone and bounded depth circuits, may
apply in the general case a well. In [Ra89], Razborov
considers this question and gives both a positive and
negative answer. He shows that for one formalization of
the method, it is too wesk to give interesting bounds.
On the other hand a generalization of the method is, in
principle, strong enough, though there are much greater
technical difficulties when applying it. Roughly speak-
ing, these two versions of the approximation method
differ in the way the class of approximating functions
are chosen. In the weaker version, the class is selected
in advance and applies to all circuits. In the stronger
version the class depends upon the circuit.

Karchmer, Raz, and Wigderson [KRW91] proposed a

direction for investigating the NC1 versus P question.
Let B. denote the set of all Boolean functions on n
variables. Given .f c B. and g c Bm we define the
composition ~ o g : {O, I}nm - {O, 1} by

f o 9(X, ...AJ = f(9(xl), . ...9(Z))

where ii c {O, I}m for i = 1, ...}n. It is clear that
d(~ o g) $ d(j) + d(g). KRW conjecture that these
two quantities are close to each other and argue that, if
so, NCl #P. Edmonds, Impagliazzo, Rudich and Sgall
[EIRS91] (and slightly later, Hbtad and Wigderson
[HW91] in a somewhat different way) proved a weak
form of this conjecture.

In [Si81], I suggest a way to use idess from descrip-
tive set theory (Moechovakw @4080] has an excellent
text on this subject) to gain insight into certain prob-
lems in circuit complexity theory. This stems ftom a
proposed analogy between polynomiality and countabil-
ity. A justification for this analogy is that uncountabil-
ity and superpolynomialit y often have a common origin:
the power set operation. In this way certain problems in
circuit complexity have infinitary analogs, often essier
to solve. When this occurs, it may lead to an approach
in the finitsry case.

A successful application of this strategy occurred in
proving the lower bound of Furst, Saxe, and myself,
mentioned earlier [FSS84]. The infinite analog to the
theorem that there are no polynomial-size, depth d cir-

cuits computing the parity function on n variables, is the
theorem that there are no countable-size, depth d, cir-
cuits computing a parity function on w many variables.
(A Boolean function on w many Boolean variables is a
parity jknction if the output changes whenever any sin-
gle input changes.) The proof of the infinitary theorem
did precede and motivate the proof in the finite case.
The two prootk are very similar in structure. A see;
end, related application of this analogy appears in the
constant-depth hierarchy theorem [Si83].
This same approach suggests a infinite analog to the

class NP: the analytic sets (also called E; sets). The
chissical theorem due to Lebesgue [Le05] stating that
the there is an snalytic set whose complement is not
analytic may thus be taken as an infinite analog to the
statement that NP#coNP. Lebesgue’s proof is a diag-
onalization, and it does not seem likely that it has a
finite counterpart. In [Si84] I give a different proof of
Lebesgue’s theorem. This new proof does not rest upon
the notion of universal set, essential to the diagonaliza-
tion in Lebeague’s proof. It offers more information of
a combinatorial nature that may be useful in the finite
case.
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Appendix: Historical Quotes

Shannon, discussing circuit design methods [Sh49]:

The problem of synthesizing non-series-parallel cir-
cuits is exceedingly ditlicult. It is even more dMicult to
show that a circuit found in this way is the most eco-
nomical one to realize a given function. The difficulty
springs from the huge number of essentially different
networks available and more particularly from the lack
of a simple mathematical idiom for representing these
circuits.

von Neumann, presenting an algorithm for solving
the assignment problem fVo531:
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It turns out that this number [of steps required by
the algorithm] is a moderate power of n, i.e., consider-
ably smaller than the “obvious” estimate n! mentioned
earlier.

Yablonski, discussing alternatives to perebor in de-
signing circuits /Ya59aJ

At present there is an extensive field of problems
in cybernetics where the existence of certain objects
or facts may be established quite trivially and, within
the limits of the classical definition of algorithms, com-
pletely effectively, yet a solution is, in practice, often
impossible because of its cumbersome nature. Such, for
example, are some of the problems involving informa-
tion coding and the analysis and synthesis of circuits.
It is here that the necessity of making the classical def-
inition an algorithm more precise naturally arises. It is
to be expected that this will, to a greater extent than
at present, take into account the peculiarities of cer-
tain classes of problems, and may, possibly, lead to such
developments in the concept of algorithm that dii7er-
ent types of algorithms will not be comparable. At the
moment it is too early to make predictions of how the
notion of an algorithm may be modified, for we have, ss
yet, very little idea of how the various classes of prob-
lems should be speciiied, In the present article we at-
tempt to explore the algorithmic difficulties arising in
the solution of cybernetic problems which, while admit-
ting of a trivial solution, on the basis of the clsssical
definition of an algorithm, are not practically solvable
because of the massive nature of that solution.

Cobham, studying why certain problems, such a mu]-
triplication, are computationally more ditlicult tlmn oth-
ers, such as addition [C064]:

Thus the process of adding m and n can be carried out
in a number of steps bounded by a linear polynomial in
i(m) and l(n). Similarly, we can multiply m and n in a
number of steps bounded by a quadratic polynomial in
i(m) tmd l(n). So, too, the number of steps involved in
the extraction of square roots, calculation of quotients,
etc., can be bounded by polynomials in the lengths of
the numbers involved, and this seems to be a property
of simple function in general. This suggests that we
consider the CISSS,which I will call X, of all functions
having this property.

For several reasons the class L seems a natural one to
consider. For one thing, if we formalize the above def-
inition relative to various general classes of computing
machines we seem always to end up with the same well-
defined class of functions. Thus we can give a mathe-
matical characterization of L having some confidence
that it characterizes correctly our informally defined
class.

Edmonds, a section marked “Digression” in a paper
giving a polynomial time algorithm for the mw”mum
matching problem fEd65]:

An explanation is due on the use of the words “effi-
cient algorithm.” First, what I present is a conceptual
description of an algorithm and not a particular formal-
ized algorithm or “code.”

For practicrd purposes computational details are vi-
tal. However, my purpose is only to show as attractively
as I can that there is an efficient algorithm. According
to the dictionary, ‘efficient” means ‘(adequate in oper-
ation or performance.” This is roughly the meaning I
want — in the sense that it is conceivable for maximum
matching to have no efficient algorithm. Perhaps a bet-
ter word is “good.”
I am claiming, as a mathematical result, the existence

of a good algorithm for finding a maximum cardinality
matching in a graph.
There is an obvious finite algorithm, but that algo-

rithm increases in difllculty exponentially with the size
of the graph. It is by no means obvious whether or not
there exists an algorithm whose difficulty increases only
algebraically with the size of the graph.
The mathematical significance of this paper rests

largely on the assumption that the two preceding sen-
tences have mathematical meaning. I am not prepared
to set up the machinery necessary to give them formal
meaning, nor is the present context appropriate for do-
ing this, but I should like to explain the idea a little fur-
ther informally. It may be that since one is customarily
concerned with existence, convergence, finiteness, and
so forth, one is not inclined to take seriously the ques-
tion of the existence of a better-than-finite algorithm.
The relative cost, in time or whatever, of the various

applications of a particular algorithm is a fairly clear
notion, at least ss a natural phenomenon. Presumably,
the notion can be formalized. Here “algorithm” is used
in the strict sense to mean the idealization of some phys-
ical machinery which gives a definite output, consisting
of cost plus the desired result, for each member of a
specified domain of inputs, the individual problems.
The problem-domain of applicability for an algorithm

often suggests for itself possible measures of size for the
individual problems — for maximum matching, for ex-
ample, the number of edges or the number of vertices
in the graph. Once a messure of problem-size is chosen,
we can define FA (N) to be the lesst upper bound on
the coat of applying algorithm A to problems of size N.
When the measure of problem-sise is reasonable and

when the sizes sssume values arbitrarily large, an
asymptotic estimate of FA (N) (let us call it the order
of dificzdty of algow”thm A) is theoretically important.
It cannot be rigged by making the algorithm artificially
difficult for smaller sizes. It is one criterion showing
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how good the algorithm ia — not merely in comparison
with other given algorithms for the same class of prob-
lems, but also on the whole how good in comparison
with itself. There are, of course, other equaUy valuable
criteria. And in practice this one is rough, one reason
being that the size of a problem which would ever be
considered is bounded.
It is plausible to assume that any algorithm is equiva-

lent, both in the problems to which it applies and in the
costs of its applications, to a “normal algorithm” which
decomposes into elementaJ steps of certain prescribed
types, so that the costs of the steps of all normal algo-
rithms are comparable. That is, we may use something
like Church’s thesis in logic. Then, it is possible to ask:
Doea there or does there not exist an algorithm of given
order of difficulty for a given class of problems?

One can find many classes of problems, besides maxi-
mum matching and its generalizations, which have algo-
rithms of exponential order but seemingly none better,
An example known to organic chemists is that of de-
ciding whether two gjven graphs are isomorphic. For
practical purposes the difference between algebraic and
exponential order is often more crucial than the dtier-
ence between finite and non-finite.

It would be unfortunate for any rigid criterion to in-
hibit the practical development of algorithms which are
either not known or known not to conform nicely to the
criterion. Many of the beet algorithmic ideaa known
today would suffer by such theoretical pedantry. In
fact, an outstanding open question is, essentially: “how
good” is a particular algorithm for linear programming,
the simplex method? And, on the other hand, many im-
portant algorithmic idess in electrical switching theory
are obviously not “good” in our sense.

However, if only to motivate the search for good,
practical algorithms, it is important to realize that it
is mathematically sensible even to question their exis-
tence. For one thing the task can then be described in
terms of concrete conjectures.

Fortunately, in the case of maximum matching the r~
suits are positive. But possibly this favorable position
is very seldom the case. Perhaps the twoness of edges
makes the algebraic order for matching rather specisJ
for matching in comparison with the order of difficulty
for more general combinatorial extremum problems.

Edmonds, discussing the matroid partition probiem
fEd65b]:

We seek a good characterization of the minimum
number of independent sets into which the columns of
a matrix of II can be partitioned. As the criterion of
“good” for the characterization we apply the “princi-
ple of the absolute supervisor.” The good characteriza-
tion will describe certain information about the matrix

which the supervisor crm require his assistant to search
out along with a tilmum partition and which the su-
pervisor can then use “with ease” to verify with mathe-
matical certainty that the partition is indeed minimum.
Having a good characterization does not mean necessar-
ily that there is a good algorithm. The assistant may
have to kill himself with work to find the information
and the partition.

Rabin, in a survey paper on automata theory fRa66]:

We shall consider an algorithm to be practical if, for
automata with n states, it requires at most Cnb (k is
a fixed integer and c a fixed constant) computational
steps. This stipulation is, admittedly, both vague and
arbitrary. We do not, in fact cannot, define what is
meant by a computational step, thus have no precise
and general measure for the complexity of algorithms.
Furthermore, there is no compelling reason to classify
algorithms requiring cn~ steps as practical.
Several points may be raised in defense of the above

stipulation. In every given algorithm the notion of a
computational step is quite obvious. Hence there is not
that much vagueness about the messure of complexity of
existing aJgorithma. Another significant pragmatic fact
is that all existing algorithms either require up to about
n4 steps or else require 2n or worse steps. Thus drawing
the line of practicality between algorithms requiring vak
steps and algorithms for which no such bound exists
seems to be reasonable.

Cook, considering the complexity of theorem proving
[C071]. The class P is denoted by C’:

Furthermore, the theorems suggest that tautologies is
a good candidate for an interesting set not in Z*, and I
feel that it ia worth spending considerable effort trying
to prove this conjecture. Such a proof would be a major
breakthrough in complexity theory.

Levin, from Zhkhtenbrot’s survey on perebor [Le73,
Z184]:

This is the situation with so called exhaustive search
problems, including: the minimization of Boolean func-
tions, the search for proofs of finite length, the deter-
mination of the isomorphism of graphs, etc. All of
these problems are solved by trivial algorithms entailing
the sequentizd scanning of all possibilities. The operat-
ing time of the algorithm is, however, exponential, and
mathematicians nurture the conviction that it is impos-
sible to find simpler algorithms.

Gi5del, in a letter to von Neumann. !fkamdated by
Arthur S. Wensinger with Sorin Lstrai.1’s guidance. The
orig”nal letter is in the Manuscript Division of the Li-
brary of Congress, Washington, D.C. The translator had
access to Juris Hartmanis’ article @It?9]. Discussions
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with liartley Rogers and Philip Scowcroft provided con-
tributions to the trsdation:

Dear Mr. von Neumann,

To my great regret I have heard about your illness.
The news reached me most unexpectedly. Morgenstern
had, to be sure, told me in the summer about some infir-
mity you had been suffering, but at the time he thought
that no major significance was to be attached to it. I
hear that you have been undergoing radical treatment
in the psst several months, and I am happy2 that this
has achieved the desired results and that things are now
going better for you. I hope and wish that your condi-
tion continues to improve and that the latest medical
advances, if possible, can lead to a complete recovery.

Since I have hesrd that you are feeling stronger now,
I tske the liberty3 of writing to you about a mathemat-
ical problem about which your views would interest me
greatly. It is evident that one can easily construct a
Turing machine which, for each formula F of the pred-
icate calculus4 and for every natural number n, will al-
low one to decide if F has a proof of length n [ length
= number of symbols ]. Let W(F, n) be the number of
steps that the machine requires for that and let p(n) =
max~!l!(F, n). The question is, how fast does p(n) grow
for an optimal machine. One can show that ~(n) z Kn.
If there actually were a machine with p(n) N Kn (or
even onlys with w Kn2), this would have consequences
of the greatest magnitude6. That ia to say, it would
clearly indicate that, despite the unsolvability of the
Entscheidungsproblem, the mental effort of the math-
ematician in the case of yes-or-no questions could be
completely (G6del’s footnote apart from the postulation of

)axioms replaced by machines. One would indeed have
to simply select an n so large7 that, if the machine
yields no result, there would then also be no reason
to think further about the problem. Now, it seems to
me, however, to be totally within the realm of possi-
bility that p(n) grows Slowly.s For 1.) it seems that
p(n) z Kn is the only estimate that can be derived

2to hear
Sfit.: I &odd like to dow mYSSlf

4 de~ eW=en titione&&i&, lit.: of the narrower function-
Calculue

5It is not complet~ clear if the word is “w”: o~Y~or “mm”:
now; however, “onIy” seemsto fit the context better.

fJt~weite~$ suggetsgreat breadth of r- or hnp~t, fit.:
carrying power far into many fields or areas where it would have
its eHect.

7or: large enough
8 G~del *WS -s0 lq~ wmt,” Whk.h doesnCItmean %ows

so slowly; but more something like “accordingly grows slowly?
where “accordingly” means “considering the type of growth of
w(n) I have bem discussing?’

from a generalization of the proof for the unsolvabil-
ity of the Entscheidungsproblem; 2.) p(n) N Kn (or
N Kn2) means, of course, simply that the number of
steps vis-h-via dem Mossen Pro biereng can be reduced
from IV to log IV (or (log lV)2)Such strong reductions10
do indeed occur, however, in the case of other finite
problems, e.g., in the csse of calculating a quadratic
residuell by means of repeated application of the law
of reciprocity. It would be interesting to know, for ex-
ample, what the situation is in the case of determining
whether a number is a prime number, and in the csse of
finite combinatorial problems, how strongly12 in genend
the number of steps via->vis the blossen Probieren can
be reduced.

I wonder if you have heard that Post’s problem (ss
to whether there are degrees of unsolvabtlty among the
problems (3y)y@, z), where p is recursive) hss been
solved in the positive by a very young man named
Richard Friedberg. The solution is very elegant13. Un-
fortunately, Friedberg does not want to pursue graduate
work in mathematics, but in medicine (evidently under
the influence of his father).

What is your opinion by the way, of the attempts
recently in vogue again to bsse Analysis14 on rsmified
type-theory 15 ? You are probably aware that in con-
nection with this, Paul Lorenzen hss progressed ss far
ss Lebesgue’s Messure Theory. But I believe that in
important sspects of Analysis non-predicative methods
of proof cannot be eliminated.

I would be very happy to hear from you persomdly;
and plesse let me know if I can do anything at all for
you.

With best greetings and wishes, also to your wife16,
Your very devoted,

Kurt Godel

P.S. I congratulate you heartily on the ...17

%.: “the simply testing or trying out”; “exhaustive search”
or “brute force” are the currently established terms
10Verringerungen
11l%stsymbol
12severely, radically; ‘how much” is not quite adequate as a

translation
131t i5 worth ~mtig that this work was done by lWedberg

in his undergraduate senior honors thesis.
14G~del ~e8 the E@sh word “Analysis” here, not the Germ=m

term “Anrdytik.”
15versweigte Typentheotie
16“an ihre Rau Gemahlin” is an unusually polite and old-

-fashioned formula, quite in accord with the formal tone of this
letter to a man clearly highly esteemed by G6deL
17... ? The balance of the postscript is missing.
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