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Variational Auto-Encoder

Factor analysis model with non-linear mapping

p(z) = N (z; 0, I)
p(xj |z) = Bernoulli(xj ; (fθ(z))j), j = 1, . . . , d

Example non-linear mapping:

fθ(z) = h2
(
b2 + W2 · h1(b1 + W1z)

)

Exact inference and learning are intractable.
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Stochastic VI

Choose variational family, e.g., diagonal Gaussian, to approximate posterior:

qϕ(z) = N (µ, diag(σ2)), ϕ = (µ, σ)

Stochastic optimization: repeatedly get unbiased gradient estimate ∇̂ϕ, update ϕ:

∇̂ϕ ≈ ∇ϕELBO(ϕ)

ϕ← ϕ + α∇̂ϕ

How to get ∇̂ϕ?
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Gradient Estimation: Reparameterization
Without

reparameterization With reparameterization
Variational distribution qϕ(z) qϕ(z)

Sampling z ∼ qϕ(z) ϵ ∼ q(ϵ), z = Tϕ(ϵ)

ELBO Eqϕ(Z)
[
log p(Z,x)

qϕ(Z)

]
Eq(ϵ)

[
log p(Tϕ(ϵ),x)

qϕ(Tϕ(ϵ))

]

ELBO estimate log p(z,x)
qϕ(z) , z ∼ qϕ(z) log p(Tϕ(ϵ),x)

qϕ(Tϕ(ϵ)) , ϵ ∼ q(ϵ)

Gradient estimate ∇ϕ log p(z,x)
qϕ(z) , z ∼ qϕ(z)

(wrong/biased)
∇ϕ log p(Tϕ(ϵ),x)

qϕ(Tϕ(ϵ)) , ϵ ∼ q(ϵ)
(unbiased)
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Reparameterization with Diagonal Gaussians

Suppose the variational family is a diagonal Gaussian

qϕ(z) = N (µ, diag(σ2))

This can be reparameterized as:

z = µ + σ ⊙ ϵ, ϵ ∼ N (0, I)

(⊙ = elementwise multiplication)
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Aside: Reparameterization with Arbitrary Gaussians

Another choice would be to use a general Gaussian distribution:

ϵ ∼ N (0, I) =⇒ µ + Lϵ ∼ N (µ, LL⊤).

This is a reparameterization with

q(ϵ) = N (ϵ|0, I), Tϕ(ϵ) = µ + Lϵ ϕ = (L, µ)

It covers any multivariate Gaussian, since an arbitrary covariance matrix Σ can be
written as Σ = LL⊤ for some L (e.g., a Cholesky factor)
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Example: Bernoulli VAE

Let’s return to our Bernoulli VAE factor analysis model and use a diagonal Gaussian
approximation:

p(z) = N (z; 0, I)
p(xj |z) = Bernoulli

(
xj ; (fθ(z))j

)
, j = 1, . . . , d

qϕ(z) = N (z; µ, diag(σ2))

BBSVI would repeat the following steps:
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ϵ ∼ N (0, I) (z = µ + σ ⊙ ϵ)

∇̂µ,σ = ∇µ,σ

{
logN (µ + σ ⊙ ϵ; 0, I)

+
d∑

j=1
log Bernoulli

(
xj ;

(
fθ(µ + σ ⊙ ϵ)

)
j

)

− logN
(
µ + σ ⊙ ϵ; µ, diag

(
σ2)) }

(µ, σ)← (µ, σ) + α · ∇̂µ,σ

With the optimized parameters we could approximate p(z|x) ≈ qϕ(z) and lower bound
the log-marginal likelihood log p(x) ≥ ELBO(ϕ). What about learning?
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Learning with Stochastic Variational Inference
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Learning with Stochastic Variational Inference

The basic idea is to jointly maximize the ELBO with respect to model parameters θ and
variational parameters ϕ by getting unbiased gradient estimates for both:

log pθ(x) ≥ ELBO(θ, ϕ) = Eqϕ

[
log pθ(Z, x)

qϕ(Z)

]

∇̂θ ≈ ∇θELBO(θ, ϕ)

∇̂ϕ ≈ ∇ϕELBO(θ, ϕ)

(θ, ϕ)← (θ, ϕ) + α · (∇̂θ, ∇̂ϕ)

11 / 23

Review Learning with Stochastic Variational Inference Bonus: Closed Form Entropy, Etc.

Learning with IID Data

How do we learn a latent variable model pθ(z, x) when we have iid data x(1), . . . , x(N)?

Each datum x(n) has its own:

▶ marginal likelihood pθ(x(n))

▶ posterior pθ(z(n) |x(n))

▶ variational distribution qϕ(n)(z(n))
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Learning with IID Data

Basic approach: introduce variational parameters ϕ(n) for each datum and construct an
overall lower bound:

L(θ) = 1
N

N∑

n=1
log pθ(x(n)) ≥ 1

N

N∑

n=1
ELBO(θ, ϕ(n), x(n))

ELBO(θ, ϕ(n), x(n)) = Eq
ϕ(n)

[
log pθ(Z(n), x(n))− log qϕ(n)(Z(n))

]

13 / 23

Review Learning with Stochastic Variational Inference Bonus: Closed Form Entropy, Etc.

Then optimize the lower bound with respect to all parameters. Compute:

∇̂ϕ(n) ≈ ∇ϕ(n)ELBO(θ, ϕ(n), x(n)), n = 1, . . . , N,

∇̂θ ≈ ∇θ
1
N

N∑

n=1
ELBO(θ, ϕ(n), x(n))

Then update θ, ϕ(1), . . . , ϕ(N) using stochastic gradients.
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Amortized Inference

The basic approach described above introduces a very large number of variational
parameters and can be very slow for large data sets.

Amortized inference proposes to use a neural net to predict the variational parameters
ϕ(n) for datum x(n), e.g.

qϕ(z(n) |x(n)) = N (
z(n); gϕ(x(n)), τ2I

)

▶ The function gϕ predicts the mean of the variational posterior approximation for
datum x(n). (We could also model the (co)variance as some function of x(n).)

▶ This is called amortization because it shares information across data points for
learning the variational approximations.
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Amortized Inferences: VAEs

A common choice for gϕ is a multi-layer neural network, similar to fθ, e.g.:

fθ(z) = h2
(
b2 + W2 · h1(b1 + W1z)

)

gϕ(x) = b4 + W4 · h3(b3 + W3x)

(h1, h2, h3 are elementwise non-linear functions)
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Illustration: p and q graphical models
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Illustration: “Auto-Encoder”

18 / 23

Review Learning with Stochastic Variational Inference Bonus: Closed Form Entropy, Etc.

19 / 23

Review Learning with Stochastic Variational Inference Bonus: Closed Form Entropy, Etc.

Example: Inference and Learning in Bernoulli VAE
Putting all the pieces together, stochastic variational inference and learning for a
Bernoulli VAE would repeat the following for all n in some order:

ϵ ∼ N (0, I) (z(n) = gϕ(x(n)) + τϵ)

∇̂θ,ϕ = ∇θ,ϕ

{
logN (

gϕ(x(n)) + τϵ; 0, I
)

+
d∑

j=1
log Bernoulli

(
x

(n)
j ;

(
fθ(gϕ(x(n)) + τϵ

)
j

)

− logN
(
gϕ(x(n)) + τϵ; gϕ(x(n)), τ2I

) }

(θ, ϕ)← (θ, ϕ) + α · ∇̂θ,ϕ
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Bonus: Closed Form Entropy, Etc.
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Bonus: Handling Some Terms in Closed Form

The ELBO can be decomposed into several terms with different computational
properties:

ELBO(ϕ) = Eqϕ

[
log p(Z, x)

qϕ(Z)

]

= Eqϕ
[log p(Z)]

︸ ︷︷ ︸
"cross entropy"

+Eqϕ
[log p(x|Z)]

︸ ︷︷ ︸
"energy"

−Eqϕ
[log qϕ(Z)]

︸ ︷︷ ︸
"entropy"

With simple distributions (esp. Gaussians) the cross entropy and entropy terms can often
be computed in closed form.
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Example: Closed-Form Cross-Entropy

Example: p(z) is a standard normal and qϕ is a diagonal Gaussian:

p(z) = N (z; 0, I)
qϕ(z) = N (

z; µ, diag(σ2)
) =⇒

∫
qϕ(z) log p(z) = −d

2 log(2π)− 1
2

d∑

j=1
(µ2

j + σ2
j )

When possible, it’s usually (but not always) best to compute these terms and their
gradients analytically, and only use Monte Carlo estimation for the energy term.

This is because lower variance gradient estimates will make the stochastic optimization
converge faster.
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