Review Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc. 000	Review •ooooooo	Learning with Stochastic Variational Inference 0000000000	Bonus: Closed Form Entropy, Etc. 000
COMPSCI 688: Probabilistic Graphi Lecture 20: Learning with Stochastic Variation	cal Models nal Inference			
Dan Sheldon Manning College of Information and Computer S University of Massachusetts Amherst	ciences		Review	
Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin	Domke (domke@cs.umass.edu) 1/23			2/23
Review Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc. 000	Review 0000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc. 000
Variational Auto-Encoder		Stochastic VI		
Factor analysis model with non-linear mapping $\begin{split} p(\mathbf{z}) &= \mathcal{N}(\mathbf{z}; 0, I) \\ p(x_j \mathbf{z}) &= Bernoulli(x_j; (f_\theta(\mathbf{z}))_j), \qquad j = 1, \dots, d \end{split}$		Choose variational family, e.g., diagonal Gaussian, to approximate posterior: $q_{\phi}(\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}, \operatorname{diag}(\boldsymbol{\sigma}^2)), \phi = (\boldsymbol{\mu}, \boldsymbol{\sigma})$ Stochastic optimization: repeatedly get unbiased gradient estimate $\hat{\nabla}_{\phi}$, update ϕ :		
Example non-linear mapping:			$\hat{\nabla}_{\phi} \approx \nabla_{\phi} ELBO(\phi)$	
$f_{\theta}(\mathbf{z}) = h_2 \big(\mathbf{b}_2 + \mathbf{W}_2 \cdot h_1 (\mathbf{b}_1 + \mathbf{W}_1) \big)$	$\mathbf{z}))$		$\phi \leftarrow \phi + \alpha \hat{\nabla}_{\phi}$	
Exact inference and learning are <i>intractable</i> .		How to get V	$\hat{ abla}_{\phi}$?	
	3/23			4/23

Review 00000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc. 000	Review 00000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc. 000
Gradient Estimation	n: Reparameterization		Reparameter	ization with Diagonal Gaussians	
	Without reparameterization	With reparameterization	Current the	unistical family is a discond Cousier	
Variational distribu	ition $q_{\phi}(z)$	$q_{\phi}(z)$	Suppose the	variational family is a diagonal Gaussian	
Sampling	$z\sim q_{\phi}(z)$	$\epsilon \sim q(\epsilon), z = \mathcal{T}_{\phi}(\epsilon)$		$q_{\phi}(\mathbf{z}) = \mathcal{N}(oldsymbol{\mu}, diag(oldsymbol{\sigma}^2))$	
ELBO	$\mathbb{E}_{q_{\phi}(Z)}\left[\log \frac{p(Z,x)}{q_{\phi}(Z)}\right]$	$\mathbb{E}_{q(\epsilon)} \left[\log \frac{p(\mathcal{T}_{\phi}(\epsilon), x)}{q_{\phi}(\mathcal{T}_{\phi}(\epsilon))} \right]$	This can be	reparameterized as:	
ELBO estimate	e $\log \frac{p(z,x)}{q_{\phi}(z)}, z \sim q_{\phi}(z)$	$\log rac{p(\mathcal{T}_{\phi}(\epsilon),x)}{q_{\phi}(\mathcal{T}_{\phi}(\epsilon))}, \epsilon \sim q(\epsilon)$		$\mathbf{z} = \boldsymbol{\mu} + \boldsymbol{\sigma} \odot \epsilon, \epsilon \sim \mathcal{N}(0, I)$	
Gradient estima	te $ abla_{\phi} \log rac{p(z,x)}{q_{\phi}(z)}, z \sim q_{\phi}(z)$ (wrong/biased)	$ abla_{\phi} \log rac{p(\mathcal{T}_{\phi}(\epsilon),x)}{q_{\phi}(\mathcal{T}_{\phi}(\epsilon))}, \epsilon \sim q(\epsilon) \ (ext{unbiased})$	(⊙ = eleme	ntwise multiplication)	
		5/23			6/23
Review Learning with Stochastic Variational Inference Bonus: Closed Form Entropy, Etc. 000000000 0000000000 000		Review 00000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc. 000	
Aside: Reparameterization with Arbitrary Gaussians		Example: Bernoulli VAE			
Another choice would be to use a general Gaussian distribution: $\epsilon \sim \mathcal{N}(0, I) \Longrightarrow \mu + L\epsilon \sim \mathcal{N}(\mu, LL^{\top}).$ This is a reparameterization with $q(\epsilon) = \mathcal{N}(\epsilon 0, I), \qquad \mathcal{T}_{\phi}(\epsilon) = \mu + L\epsilon \qquad \phi = (L, \mu)$		Let's return to our Bernoulli VAE factor analysis model and use a diagonal Gaussian approximation: $\begin{split} p(\mathbf{z}) &= \mathcal{N}(\mathbf{z}; 0, I) \\ p(x_j \mathbf{z}) &= \text{Bernoulli}(x_j; (f_{\theta}(\mathbf{z}))_j), \qquad j = 1, \dots, d \\ q_{\phi}(\mathbf{z}) &= \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \text{diag}(\boldsymbol{\sigma}^2)) \end{split}$			
written as $\Sigma = LL^{\top}$ for some L (e.g., a Cholesky factor)		BBSVI woul	d repeat the following steps:		
		7 / 23			8 / 23

Review 0000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc.	Review 00000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc. 000
Learning with	n IID Data				
Basic approach: introduce variational parameters $\phi^{(n)}$ for each datum and construct an overall lower bound: $\mathcal{L}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(\mathbf{x}^{(n)}) \geq \frac{1}{N} \sum_{n=1}^{N} ELBO(\theta, \phi^{(n)}, \mathbf{x}^{(n)})$ $ELBO(\theta, \phi^{(n)}, \mathbf{x}^{(n)}) = \mathbb{E}_{q_{\phi^{(n)}}} \left[\log p_{\theta}(\mathbf{Z}^{(n)}, \mathbf{x}^{(n)}) - \log q_{\phi^{(n)}}(\mathbf{Z}^{(n)}) \right]$			Then optimize the lower bound with respect to all parameters. Compute: $\hat{\nabla}_{\phi^{(n)}} \approx \nabla_{\phi^{(n)}} ELBO(\theta, \phi^{(n)}, \mathbf{x}^{(n)}), n = 1, \dots, N,$ $\hat{\nabla}_{\theta} \approx \nabla_{\theta} \frac{1}{N} \sum_{n=1}^{N} ELBO(\theta, \phi^{(n)}, \mathbf{x}^{(n)})$ Then update $\theta, \phi^{(1)}, \dots, \phi^{(N)}$ using stochastic gradients.		
Review oooooooooooooooooooooooooooooooooooo	Learning with Stochastic Variational Inference	13/23 Bonus: Closed Form Entropy, Etc. 000	Review OOOOOoooo Amortized Inf	Learning with Stochastic Variational Inference 0000000 erences: VAEs	14/23 Bonus: Closed Form Entropy, Etc. 000
 The basic apparameters a Amortized i φ⁽ⁿ⁾ for data The fundatum i This is learning 	pproach described above introduces a very large n and can be very slow for large data sets. inference proposes to use a neural net to <i>predict</i> to um $\mathbf{x}^{(n)}$, e.g. $q_{\phi}(\mathbf{z}^{(n)} \mathbf{x}^{(n)}) = \mathcal{N}(\mathbf{z}^{(n)}; g_{\phi}(\mathbf{x}^{(n)}), \tau^2)$ nection g_{ϕ} predicts the mean of the variational post $\mathbf{x}^{(n)}$. (We could also model the (co)variance as so called <i>amortization</i> because it shares information g the variational approximations.	umber of variational the variational parameters I) terior approximation for ome function of $\mathbf{x}^{(n)}$.) across data points for	A common c $(h_1,h_2,h_3$ ar	hoice for g_{ϕ} is a multi-layer neural network, simi $f_{ heta}(\mathbf{z}) = h_2(\mathbf{b}_2 + \mathbf{W}_2 \cdot h_1(\mathbf{b}_1 + \mathbf{W}_1\mathbf{z})$ $g_{\phi}(\mathbf{x}) = \mathbf{b}_4 + \mathbf{W}_4 \cdot h_3(\mathbf{b}_3 + \mathbf{W}_3\mathbf{x})$ e elementwise non-linear functions)	lar to $f_{ heta}$, e.g.:
		15 / 23			16 / 23

Review 00000000	Learning with Stochastic Variational Inference 00000000000	Bonus: Closed Form Entropy, Etc. 000	Review 00000000	Learning with Stochastic Variational Inference 00000000€00	Bonus: Closed Form Entropy, Etc. 000
Illustration: p and q	graphical models		Illustration: "A	Auto-Encoder"	
		17 / 23			18/23
Review 0000000	Learning with Stochastic Variational Inference 000000000€0	Bonus: Closed Form Entropy, Etc. 000	Review	Learning with Stochastic Variational Inference 000000000●	Bonus: Closed Form Entropy, Etc. 000
			Example: Infer	ence and Learning in Bernoulli VAE	
			Putting all the Bernoulli VAE	e pieces together, stochastic variational inference would repeat the following for all n in some or	e and learning for a der:
			$\epsilon \sim \mathcal{N}(0,$	I)	$(\mathbf{z}^{(n)} = g_{\phi}(\mathbf{x}^{(n)}) + \tau\epsilon)$
					(, , , ,
			$\hat{\nabla}_{\theta,\phi} = \nabla_{\theta,\phi}$	$\left\{ \log \mathcal{N}(g_{\phi}(\mathbf{x}^{(n)}) + \tau \epsilon; \ 0, I) \right\}$	
				$\int_{a}^{d} dx = \int_{a}^{b} \int_{a}^{b}$	
				+ $\sum_{j=1}^{j} \log \operatorname{Bernoulli}\left(x_{j}^{*}; \left(f_{\theta}(g_{\phi}(\mathbf{x}^{(0)}) + \tau\epsilon)_{j}\right)\right)$	
				$-\log \mathcal{N}\left(g_{\phi}(\mathbf{x}^{(n)}) + \tau \epsilon; \ g_{\phi}(\mathbf{x}^{(n)}), \tau^2 I\right) \right\}$	
			$(\theta, \phi) \leftarrow (\theta, \phi)$	$(\mathbf{h}) + \alpha \cdot \hat{\nabla}_{\theta,\phi}$	
		19 / 23			20/23

Review 0000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc.	Review 0000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc. 0€0
			Bonus: Hand	ling Some Terms in Closed Form	
			The ELBO of properties:	an be decomposed into several terms with differe	ent computational
	Bonus: Closed Form Entropy, Etc			$ELBO(\phi) = \mathbb{E}_{q_{\phi}}\left[\log \frac{p(Z, x)}{q_{\phi}(Z)}\right]$	
				$= \underbrace{\mathbb{E}_{q_{\phi}}[\log p(Z)]}_{\text{"cross entropy"}} + \underbrace{\mathbb{E}_{q_{\phi}}[\log p(x Z)]}_{\text{"energy"}} - \underbrace{\mathbb{E}_{q_{\phi}}[\log p(x $	$q_{\phi}[\log q_{\phi}(Z)]$ "entropy"
			With simple be computed	distributions (esp. Gaussians) the cross entropy ar I in closed form.	nd entropy terms can often
		21/23			22 / 23
Review 00000000	Learning with Stochastic Variational Inference	Bonus: Closed Form Entropy, Etc.			
Example: Clo	osed-Form Cross-Entropy				
Example: p	(\mathbf{z}) is a standard normal and q_{ϕ} is a diagonal Gaussi-	an:			
$p(\mathbf{z}) = \mathcal{N}(\mathbf{z})$ $q_{\phi}(\mathbf{z}) = \mathcal{N}(\mathbf{z})$	$ \begin{array}{ll} \left(\mathbf{z}; 0, I \right) \\ \left(\mathbf{z}; \boldsymbol{\mu}, diag(\boldsymbol{\sigma}^2) \right) \end{array} \implies \int q_{\phi}(\mathbf{z}) \log p(\mathbf{z}) = -\frac{d}{2} \log(q) $	$2\pi) - \frac{1}{2} \sum_{j=1}^{d} (\mu_j^2 + \sigma_j^2)$			
When possible, it's usually (but not always) best to compute these terms and their gradients analytically, and only use Monte Carlo estimation for the energy term.					
This is becau converge fas	use lower variance gradient estimates will make the s ter.	tochastic optimization			
		23 / 23			