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Variational Inference

1. Input: p(z, x) and fixed x
2. Choose some approximating family qϕ(z)
3. Maximize ELBO(ϕ) wrt ϕ — equivalent to minimizing KL(qϕ(z) ∥ p(z|x))
4. Use qϕ(z) as a proxy for p(z|x)

ELBO(ϕ) = Eqϕ(Z)

[
log p(Z, x)

qϕ(Z)

]
= Eqϕ(Z) [log p(Z, x)]− Eqϕ

[log qϕ(Z)]
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Variational Inference

Something we skipped: p(z, x) discrete graphical model, q(z) = ∏
j qj(zj) (“mean

field”)

Today: z continuous, p(z, x) black box, q(z) TBD
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Factor Analysis
Factor analysis is a classical statistical model. It posits an observed vector x ∈ Rd is
generated as a linear combination of basis vectors w1, . . . , wm with weights z1, . . . , zm

plus noise:
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Probabilistic factor analysis assumes the weights are drawn from a standard normal. The
generative process is:

p(z) = N (z; 0, I)
p(x|z) = N (x; Wz, Ψ)

(Typically Ψ is diagonal and the data is pre-processed so x has zero mean.)
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Visualization: PCA Demo
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Factor Analysis: Learning

Consider learning the parameters θ = (W, Ψ) given data x(1), . . . , x(N) assumed to be
independently drawn from this model.

Since z is latent, the log-likelihood of a single datum x is log p(x), the “log-marginal
likelihood”.

In this model, the marginal likelihood is available in closed form:

p(x) =
∫
N (z; 0, I)N (x; Wz, Ψ)dz = N (x; 0, WW⊤ + Ψ)
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Therefore, we can learn by maximizing the log-marginal likelihood:

L(θ) = −N

2 log(|2πΣ|)− 1
2

N∑

n=1
x(n)⊤Σ−1x(n), Σ = WW⊤ + Ψ

Alternately, there is an EM algorithm for this model where both E and M steps have
simple forms.
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Factor Analysis: Generalizations

This model is “easy”, but factor analysis has many generalizations that make exact
learning and inference intractable.

A variational autoencoder (VAE) uses a nonlinear-function fθ instead of a linear
transformation W to map from z to the mean of x:

p(z) = N (z; 0, I)
p(x|z) = N (x; fθ(z), Ψ)
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A typical structure for fθ is a multi-layer neural network, e,g.

fθ(z) = h2
(
b2 + W2 · h1(b1 + W1z)

)

where h2, h1 are element-wise nonlinear functions.
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Another generalization changes the likelihood, e.g., to a Bernoulli distribution:

p(z) = N (z; 0, I)
p(xj |z) = Bernoulli

(
xj ; (fθ(z))j

)
, j = 1, . . . , d
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Inference and Learning in Generalized Models

Almost any change from the basic factor analysis model makes it so we can’t compute
the marginal likelihood p(x) exactly, so inference and learning become hard.

The model is only tractable with linear transformations and a Gaussian likelihood.

We need additional inference tools for the generalizations.
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Black-Box Stochastic Variational Inference

15 / 29

Review Motivation: Continuous Latent Variable Models Black-Box Stochastic Variational Inference

Black-Box Stochastic Variational Inference

A general inference approach that works well for models with continuous latent variables,
including factor analysis, is black-box stochastic variational inference:

▶ Black box: only requires computing log p(z, x) and its gradients for different z

▶ Stochastic: optimizes the ELBO using Monte Carlo estimates
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Stochastic Variational Inference

▶ Input: p(z, x) and fixed x
▶ Start with some ϕ
▶ For t = 1, 2, . . . , T

▶ g ← unbiased estimate of ∇ϕELBO
▶ Take a small step: ϕ← ϕ + ϵg (or Adam or other optimizer)

▶ Return ϕ

Main issue: how to get g?
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Warmup: Estimating the ELBO

It’s easy to estimate the ELBO via Monte Carlo samples:

ELBO(ϕ) ≈ 1
K

K∑

i=1
log p(z(i), x)

qϕ(z(i))
z(i) ∼ qϕ

This is unbiased: expected value of RHS = ELBO(ϕ) for any value of K.

18 / 29

Review Motivation: Continuous Latent Variable Models Black-Box Stochastic Variational Inference

Estimating the Gradient? (False Start)

What happens if we try to estimate the gradient the same way? We want:

∇ϕELBO(ϕ) = ∇ϕ Eqϕ

[
log p(Z, x)

qϕ(Z)

]

Consider the estimate:
∇ϕ log p(z, x)

qϕ(z) , z ∼ qϕ.
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This is not unbiased! It neglects the fact that the distribution of z depends on ϕ:

∇ϕELBO(ϕ) = ∇ϕ

∫
qϕ(z) log p(z, x)

qϕ(z) dz

The false start incorrectly interchanges the gradient and the expectation:

∇ϕ Eqϕ

[
log p(Z, x)

qϕ(Z)

]
̸= Eqϕ

[
∇ϕ log p(Z, x)

qϕ(Z)

]
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Reparameterization Trick

The reparameterization trick is a way to convert the ELBO into an expectation with
respect to a fixed distribution (independent of ϕ) so we can interchange the gradient
and expectation. The idea is to draw samples of z by transforming a random variable
from a fixed base distribution.

Example: z = µ + σϵ, ϵ ∼ N (0, 1) =⇒ z ∼ N (µ, σ2)

General case: z = Tϕ(ϵ), ϵ ∼ q(ϵ) =⇒ z ∼ qϕ(z)

We call Tϕ and q(ϵ) a reparameterization of qϕ
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ELBO Gradient with Reparameterization
With reparameterization, we can write the ELBO as an expectation over q(ϵ):

ELBO(ϕ) = Eq(ϵ)

[
log p (Tϕ(ϵ), x)

qϕ (Tϕ(ϵ))

]

Now we can interchange the gradient and expectation

∇ϕELBO(ϕ) = ∇ϕ Eq(ϵ)

[
log p (Tϕ(ϵ), x)

qϕ (Tϕ(ϵ))

]
= Eq(ϵ)

[
∇ϕ log p (Tϕ(ϵ), x)

qϕ (Tϕ(ϵ))

]
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Reparameterization Gradient Estimate

This gives a simple unbiased Monte Carlo estimate of the gradient:

g = ∇ϕ

(
1
K

K∑

i=1
log

p
(
Tϕ(ϵ(i)), x

)

qϕ

(Tϕ(ϵ(i))
)
)

, ϵ(1), . . . , ϵ(K) ∼ q(ϵ)

We can compute it as follows:

1. Draw ϵ(1), . . . , ϵ(K) ∼ q(ϵ)
2. Compute ÊLBO(ϕ, ϵ(1), . . . , ϵ(K)) = term in parentheses above
3. Use autodiff to get g = ∇ϕÊLBO(ϕ, ϵ(1:K))
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Reparameterization with Gaussians

Multivariate Gaussians are common variational distributions, and easy to reparameterize:

ϵ ∼ N (0, I) =⇒ µ + Lϵ ∼ N (µ, LL⊤).

This is a reparameterization with

q(ϵ) = N (ϵ|0, I), Tϕ(ϵ) = µ + Lϵ ϕ = (L, µ)

It covers any multivariate Gaussian, since an arbitrary covariance matrix Σ can be
written as Σ = LL⊤ for some L (e.g., a Cholesky factor)
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Reparameterization with Diagonal Gaussians

Another common variational distribution is a diagonal Gaussians:

qϕ(z) = N (µ, diag(σ2))

This can be reparameterized as:

z = µ + σ ⊙ ϵ, ϵ ∼ N (0, I)

(⊙ = elementwise multiplication)
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Example: Factor Analysis

Let’s return to our Bernoulli VAE model

p(z) = N (z; 0, I)
p(xj |z) = Bernoulli

(
xj ; (fθ(z))j

)
, j = 1, . . . , d

Suppose we choose a diagonal Gaussian variational family

qϕ(z) = N (z; µ, diag(σ2))
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We now know how to use BBSVI with the reparameterization trick to optimize the
ELBO.

With the optimized parameters ϕ = (µ, σ) we can
▶ approximate p(z|x) ≈ qϕ(z)
▶ lower bound the log-marginal likelihood log p(x) ≥ ELBO(ϕ)

Next time: learning the model fθ. Thoughts?
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Bonus: Handling Some Terms in Closed Form

The ELBO can be decomposed into several terms with different computational
properties:

ELBO(ϕ) = Eqϕ

[
log p(Z, x)

qϕ(Z)

]

= Eqϕ
[log p(Z)]

︸ ︷︷ ︸
"cross entropy"

+Eqϕ
[log p(x|Z)]

︸ ︷︷ ︸
"energy"

−Eqϕ
[log qϕ(Z)]

︸ ︷︷ ︸
"entropy"

With simple distributions (esp. Gaussians) the cross entropy and entropy terms can often
be computed in closed form.
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Example: cross entropy standard normal and diagonal Gaussian

p(z) = N (z; 0, I)
qϕ(z) = N (z; µ, diag(σ2)

) =⇒
∫

qϕ(z) log p(z) = −d

2 log(2π)− 1
2

d∑

j=1
(µ2

j + σ2
j )

When possible, it’s usually (but not always) best to compute these terms and their
gradients analytically, and only use Monte Carlo estimation for the energy term.

This is because lower variance gradient estimates will make the stochastic optimization
converge faster.
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