
Hamiltonian MCMC

Dan Sheldon

April 15, 2024

Review: Metropolis-Hastings

I Given: probability density P (x), x 2 Rd

I Goal: generate sample x ⇠ P

Metropolis-Hastings

I Initialize x(0) arbitrarily

I Given x(t) = x, propose

x0 ⇠ Q(· | x)

I Accept and set x(t+1) = x0 with probability min(a, 1)

a =
P (x0)
P (x)

· Q(x | x0)
Q(x0 | x)

I Else reject and set x(t+1) = x(t)

For large enough T , have x(T) ⇠ P

Problem: random walk

Slow mixing due to “random walk” behavior

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

388 30 — E�cient Monte Carlo Methods

Algorithm 30.1. Octave source
code for the Hamiltonian Monte
Carlo method.

g = gradE (x) ; # set gradient using initial x

E = findE (x) ; # set objective function too

for l = 1:L # loop L times

p = randn (size(x)) ; # initial momentum is Normal(0,1)

H = p’ * p / 2 + E ; # evaluate H(x,p)

xnew = x ; gnew = g ;

for tau = 1:Tau # make Tau ‘leapfrog’ steps

p = p - epsilon * gnew / 2 ; # make half-step in p

xnew = xnew + epsilon * p ; # make step in x

gnew = gradE (xnew) ; # find new gradient

p = p - epsilon * gnew / 2 ; # make half-step in p

endfor

Enew = findE (xnew) ; # find new value of H

Hnew = p’ * p / 2 + Enew ;

dH = Hnew - H ; # Decide whether to accept

if (dH < 0) accept = 1 ;

elseif (rand() < exp(-dH)) accept = 1 ;

else accept = 0 ;

endif

if (accept)

g = gnew ; x = xnew ; E = Enew ;

endif

endfor

Hamiltonian Monte Carlo Simple Metropolis

(a)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(c)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(b)

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1

(d)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 30.2. (a,b) Hamiltonian
Monte Carlo used to generate
samples from a bivariate Gaussian
with correlation ρ = 0.998. (c,d)
For comparison, a simple
random-walk Metropolis method,
given equal computer time.

Why? Typical proposal is a random displacement

I Spherical Gaussian ! Brownian motion-like

I Ignores density surface

Main Idea

I Idea: use density to guide proposals
I Select random velocity p/m 2 Rd

I p = momentum, m = mass

I Simulate motion on energy surface

{(x, E(x)) : x 2 Rd} ✓ Rd+1, E(x) = � log P (x)

with initial velocity p/m for some amount of time to get
proposal x0.

Main Idea

Demo: P (x), E(x), motion in 1D

Hamiltonian Mechanics

I Position x 2 Rd

I Velocity p/m 2 Rd

I Potential energy E(x) (= height)

I Temporal dynamics

dx

dt
=

p

m
dp

dt
= �@E(x)

@x

Puck of mass m sliding on frictionless surface with velocity p/m,
height at x equal to E(x) (and thus “incline” @E(x)/@x).

Generalization: Kinetic Energy

Define K(p) =
pTp

2m

kinetic energy

dx

dt
=

p

m
dp

dt
= �@E(x)

@x

=)

dx

dt
=

@K(p)

@p

dp

dt
= �@E(x)

@x

Generalization: The Hamiltonian

Define H(x,p) = E(x) + K(p)

Hamiltonian or total energy

dx

dt
=

@K(p)

@p

dp

dt
= �@E(x)

@x

=)

dx

dt
=

@H(x,p)

@p

dp

dt
= �@H(x,p)

@x

Simluating Hamiltonian Mechanics

Euler’s method

x(t + ") = x(t) + "
p(t)

m

p(t + ") = p(t) � "
@E(x(t))

@x

Problem: numerically unstable

Euler’s Method

120 Handbook of Markov Chain Monte Carlo

at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).

Figure 5.1a shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, and using a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3 × 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.

(a)

M
om

en
tu

m
 (p

)

Euler’s method, stepsize 0.3

−2

−1

0

1

2

−2

−1

0

1

2
(b) Modified Euler’s method, stepsize 0.3

M
om

en
tu

m
 (p

)

M
om

en
tu

m
 (p

)

−2

−1

0

1

2

−2

−1

0

1

2

M
om

en
tu

m
 (p

)

(c) (d)Leapfrog method, stepsize 0.3

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2 + p2/2. The initial
state was q = 0, p = 1. The stepsize was ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).

Leapfrog Method

More accurate and stable method

p(t + "/2) = p(t) � ("/2)
@E(x(t))

@x

x(t + ") = x(t) + "
p(t + "/2)

m

p(t + ") = p(t + "/2) � ("/2)
@E(x(t + "))

@x

Leapfrog Method

120 Handbook of Markov Chain Monte Carlo

at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).

Figure 5.1a shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, and using a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3 × 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.

(a)

M
om

en
tu

m
 (p

)

Euler’s method, stepsize 0.3

−2

−1

0

1

2

−2

−1

0

1

2
(b) Modified Euler’s method, stepsize 0.3

M
om

en
tu

m
 (p

)

M
om

en
tu

m
 (p

)

−2

−1

0

1

2

−2

−1

0

1

2

M
om

en
tu

m
 (p

)

(c) (d)Leapfrog method, stepsize 0.3

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2 + p2/2. The initial
state was q = 0, p = 1. The stepsize was ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).

Hamiltonian MCMC

Random velocity/momentum instead of random displacement

I Start at x

I Choose random momentum p ⇠ exp(�pTp/2m)

I Simluate Hamiltonian mechanics for s time units
�! end at x0

I Propose x0

Problem: how to compute Q(x0 | x) for acceptance probability?

Auxilliary Variables

Sample both x and p from

P (x,p) = exp(�H(x,p))

= exp(�E(x)) exp(�K(p)),

when done, discard p values

Note: x and p are independent

Hamiltonian MCMC

Gibbs step

I Start at (x,p�)

I Choose random momentum p ⇠ exp(�pTp/2m)

I End at (x,p)

Metropolis-Hastings step

I Start at (x,p)

I Simluate Hamiltonian mechanics ! end at (x0,p0)
I Propose (x0,�p0)

Acceptance Probability?

a =
P (x0,�p0)
P (x,p)

· Q(x,p | x0,�p0)
Q(x0,�p0 | x,p)

=
P (x0,�p0)
P (x,p)

(reversibility, volume preservation)

= exp(E(x) � E(x0) + K(p) � K(p0)) (K(p0) = K(�p0))

⇡ 1 (conservation of energy)

Reversibility

Let TL," : R2d ! R2d be simulation mapping with L steps at time
increment "

TL,"(x,p) = (x0,p0) =) TL,"(x
0,�p0) = (x,�p)

Demo

Demo with sampling

Example

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

388 30 — E�cient Monte Carlo Methods

Algorithm 30.1. Octave source
code for the Hamiltonian Monte
Carlo method.

g = gradE (x) ; # set gradient using initial x

E = findE (x) ; # set objective function too

for l = 1:L # loop L times

p = randn (size(x)) ; # initial momentum is Normal(0,1)

H = p’ * p / 2 + E ; # evaluate H(x,p)

xnew = x ; gnew = g ;

for tau = 1:Tau # make Tau ‘leapfrog’ steps

p = p - epsilon * gnew / 2 ; # make half-step in p

xnew = xnew + epsilon * p ; # make step in x

gnew = gradE (xnew) ; # find new gradient

p = p - epsilon * gnew / 2 ; # make half-step in p

endfor

Enew = findE (xnew) ; # find new value of H

Hnew = p’ * p / 2 + Enew ;

dH = Hnew - H ; # Decide whether to accept

if (dH < 0) accept = 1 ;

elseif (rand() < exp(-dH)) accept = 1 ;

else accept = 0 ;

endif

if (accept)

g = gnew ; x = xnew ; E = Enew ;

endif

endfor

Hamiltonian Monte Carlo Simple Metropolis

(a)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(c)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(b)

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1

(d)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 30.2. (a,b) Hamiltonian
Monte Carlo used to generate
samples from a bivariate Gaussian
with correlation ρ = 0.998. (c,d)
For comparison, a simple
random-walk Metropolis method,
given equal computer time.

Example

Setup: 100D Gaussian, standard deviations in di↵erent dimensions
are 0.01, 0.02, . . . , 1.00

MCMC Using Hamiltonian Dynamics 131

with the same standard deviation. As discussed below in Section 5.4.1, the performance of
both these sampling methods is invariant to rotation, so this example is illustrative of how
they perform on any multivariate Gaussian distribution in which the square roots of the
eigenvalues of the covariance matrix are 0.01, 0.02, . . . , 0.99, 1.00.

For this problem, the position coordinates, qi, and corresponding momentum coordi-
nates, pi, are all independent, so the leapfrog steps used to simulate a trajectory operate
independently for each (qi, pi) pair. However, whether the trajectory is accepted depends
on the total error in the Hamiltonian due to the leapfrog discretization, which is a sum of
the errors due to each (qi, pi) pair (for the terms in the Hamiltonian involving this pair).
Keeping this error small requires limiting the leapfrog stepsize to a value roughly equal to
the smallest of the standard deviations (0.01), which implies that many leapfrog steps will
be needed to move a distance comparable to the largest of the standard deviations (1.00).

Consistent with this, I applied HMC to this distribution using trajectories with L = 150
and with ε randomly selected for each iteration, uniformly from (0.0104, 0.0156), which
is 0.013 ± 20%. I used random-walk Metropolis with proposal standard deviation drawn
uniformly from (0.0176, 0.0264), which is 0.022 ± 20%. These are close to optimal set-
tings for both methods. The rejection rate was 0.13 for HMC and 0.75 for random-walk
Metropolis.

Figure 5.6 shows results from runs of 1000 iterations of HMC (right) and of random-
walk Metropolis (left), counting 150 random-walk Metropolis updates as one iteration, so
that the computation time per iteration is comparable to that for HMC. The plot shows
the last variable, with the largest standard deviation. The autocorrelation of these values
is clearly much higher for random-walk Metropolis than for HMC. Figure 5.7 shows the
estimates for the mean and standard deviation of each of the 100 variables obtained using
the HMC and random-walk Metropolis runs (estimates were just the sample means and
sample standard deviations of the values from the 1000 iterations). Except for the first few

Random−walk Metropolis

La
st

po
sit

io
n

co
or

di
na

te

0 200 400
Iteration

600 800 1000

−2

−3

−1

0

1

2

3

La
st

po
sit

io
n

co
or

di
na

te

−2

−3

−1

0

1

2

3
Hamiltonian Monte Carlo

0 200 400
Iteration

600 800 1000

FIGURE 5.6
Values for the variable with largest standard deviation for the 100-dimensional example, from a random-walk
Metropolis run and an HMC run with L = 150. To match computation time, 150 updates were counted as one
iteration for random-walk Metropolis.

