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Bayesian Inference Example

Suppose we observe data z), . .. ,x(”) which we assume to come from a Bernoulli

model

0 2z =1

(n) _
pa0) = {1 e,

» Maximum-likelihood says to find 6 by solving maxy % Zf:]:l logp(a?(")|9)
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When might we want something different?

Example: you go on a three-day trip to Australia and want to learn about the weather

1 rain
X = )
0 no rain

Observe 20 = 1,22 = 1,203 =1
MLE learning — =1

It rains every day in Australia. What went wrong?

4/23




Bayesian Inference
00080000

Being Bayesian

A Bayesian says: give me the probability of 6 given the data. What does this mean?

p(6)p(Data|0)

p(f|Data) = »(Data)

v

p(0) is the prior. It encodes beliefs (either subjective or objective) about 6 prior to
seeing any evidence. We need one!

v

p(Datal0) = T2, p(2(™|6) is the likelihood. It incorporates evidence.

v

p(Data) = [ p(6)p(Datalf)df is the marginal likelihood or evidence. We usually
don't need to compute it.

v

p(f|Data) is the posterior. What we believe about 6 after observing data.
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Why Be Bayesian?

> Philosophy: Update subjective prior beliefs based on evidence.
» Practical: deal with small samples

» Practical: excellent tools exist (MCMC, stan)
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Making our Model Bayesian

6 ~ Uniform([0, 1])
2™ ~ Bernoulli(f)
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Bayesian Modeling: Implications

» We now have a joint probability model p(6, x)
p(6, ) = p(0)p(x|)

> 6 is now a random variable instead of a fixed but unknown parameter
> Learning is replaced by posterior inference
> Learning: maxg £()z(M), ... (V)

> Posterior inference: compute p(f|z(V, ... z(M)
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Posterior Inference
p(0)p(z1N) )

p(atN))
o p(O)p(zM]0)

p(0]s)) =

N
= H 9]1[90(">=1](1 _ 9)11[m<">:0]
n=1

= g#X=1 (1 — 9)#(X:0)

E.g., use MCMC to sample from density on [0, 1] proportional to this

General inference strategy: use MCMC to sample from density proportional to
p(0)p(Data | 6)

But in some special cases the problem is easy to solve without MCMC. ..

Mixture Model
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The Easy Case: Conjugacy Example: Beta-Bernoulli Model
Some prior-likelihood pairs have a special relationship that makes computing the
posterior easy
This relationship is called conjugacy. It means the posterior p(6|x) will be in the same Likelihood: p(z|f) = Bernoulli(z[0)
parametric family as the prior p(6). E.g. Prior: p(6) = Beta(f|a,b)
p(#) = Beta(6a, b — (0]z) = Beta(f]d’, b) Fla+b) o b1
p(0) = Beta(f]a, b) p(0lx) = Beta(f]a’, Beta(fla,b) = ————-0""1(1-0)*"!, 9e0,1]
[(a)L'(b)
We say:
> p(f) is a conjugate prior for p(x|6)
» p(#) and p(z|0) are a conjugate pair
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Beta Density

a=1b=1
a=2,b=2
a=3,b=1 7
a=1,b=3
a=4 b=4

25+

,,,,,,,, 000080000 00000

Beta Density

I'(a+b)

Beta(0|a7b) = W 9“71(1 - 0)b71 5 0 e [07 ].]
| —
N—— unnormalized density

normalization const.

Discuss

> Unnormalized density!
» Gamma function
> I(t) = [;7 2 e 2dz
> I'(n) = (n —1)! for integer n

Conjugate Bayesian Inference Mixture
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Beta Density Beta-Bernoulli Posterior
D(a +b) . b1 Observe x. Easy way: drop all terms that don't involve 6
Beta(fla,b) = ———+~ 0 (1-0 0 1
normalization const. unnormalized density p(9|x) = M
[ p(0")p(x|6")do’
; 2 4 . . ) x p(0)p(z|0)
Question: p(f) x 0%(1 — 6)* on 6 € [0,1]. What is normalized density? b
_ F(a + ) 0(171(1 _ 9)1)71 . 9]1[3@:1](1 _ 9)]I[$:O]
. OND
p(0) < 0°(1 - 0) o o~ LHIla=1](1 _ gyb-1+1la=0]
=0"'(1-60)"" a=3b=5
x %92(1 _ gyt (normalized) p(0]x) = Beta(d | a + Iz = 1],b+ Iz = 0])
Result: posterior is also Beta (conjugate!). Add one to either a or b depending on
. . . . N value of z.
The point: recognize unnormalized density, get normalization constant for free
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Beta-Bernoulli Belief Updating

Observe (M, 2 .. 2™ want to compute p(g|z(), ... (V)

By applying the simple posterior update we just saw sequentially, we get

p(0lzD . ™) =Beta(d| a+ XN Tz =

=Beta(f] a+#(X =1), b+ #(X =0))

Simple updates based on counting

1], b+ 300 It = 0])

Mixture Model
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Beta-Bernoulli Belief Updating

Demo
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Mixture Model
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Bayesian Modeling with generic inference techniques like MCMC is powerful. We can
write down a generative model that we think is a good match to our data and perform

inference.

Likelihood:

Prior:

6 ~ Dirichlet(1)
1z ~ N (100,20),

z ~ Categorical (61, . . .
x ~ N (uz,10)

ze{l,...,K}
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Mixture with Many Observations Plate Notation

Suppose we draw many (2™, (") pairs and observe only z(" (i.e. 2(") is a latent We can draw the same thing compactly in plate notation to indicate repetition
variables). Here's what the graphical model looks like:
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Computing the Posterior

The posterior in this model looks like this:
p(0,p1:x, Z<1:N)|I(1:N))
= p(0, pr.xc, 20N DY fp(2 1Ny
K N N
o p(6) T ) T (=18) TT 0™ =, 1)
k=1

n=1 n=1

We could sample from this unnormalized distribution using
MCMC.
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