

	Conigate Eyyesian Inference	${ }_{\text {Mixtur }}$
Being Bayesian		
A Bayesian says: give me the probability of θ given the data. What does this mean?		
$p(\theta \mid \text { Data })=\frac{p(\theta) p(\text { Data } \mid \theta)}{n(\text { Data })}$		
- $p(\theta)$ is the prior. It encodes beliefs (either subjective or objective) about θ prior to seeing any evidence. We need one!		
- $p($ Data $\mid \theta)=\prod_{n=1}^{N} p\left(x^{(n)} \mid \theta\right)$ is the likelihood. It incorporates evidence. - $p($ Data $)=\int p(\theta) p($ Data $\mid \theta) d \theta$ is the marginal likelihood or evidence. We usually don't need to compute it.		
- $p(\theta \mid$ Data $)$ is the posterior. What we believe about θ after observing data.		
5/23		

Coniygate Byyesian Inference
Oobocooo
Mixture Model
Dooo
Why Be Bayesian?

- Philosophy: Update subjective prior beliefs based on evidence.
- Practical: deal with small samples
- Practical: excellent tools exist (MCMC, stan)

Bayesian Modeling: Implications

- We now have a joint probability model $p(\theta, x)$

$$
p(\theta, x)=p(\theta) p(x \mid \theta)
$$

- θ is now a random variable instead of a fixed but unknown parameter
- Learning is replaced by posterior inference
- Learning: $\max _{\theta} \mathcal{L}\left(\theta \mid x^{(1)}, \ldots, x^{(N)}\right)$
- Posterior inference: compute $p\left(\theta \mid x^{(1)}, \ldots, x^{(N)}\right)$

Bayesial Ifference	Coniugate Bayesian Inference	${ }_{\text {Mixure }}$ Modeol
	Conjugate Bayesian Inference	

Byaveian Ifference
ococoncon

Coniugate Byasesian Inference
coiboooco

Mixture Model
00000

Example: Beta-Bernoulli Model

Likelihood: $p(x \mid \theta)=\operatorname{Bernoulli}(x \mid \theta)$
Prior: $p(\theta)=\operatorname{Beta}(\theta \mid a, b)$

$$
\operatorname{Beta}(\theta \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}, \quad \theta \in[0,1]
$$

