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Bayesian Inference Example

Suppose we observe data x(1), . . . , x(n) which we assume to come from a Bernoulli
model

p(x(n)|◊) =
I

◊ x(n) = 1
1 ≠ ◊ x(n) = 0

I Maximum-likelihood says to find ◊ by solving max◊
1
n

qN
n=1 log p(x(n)|◊)
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When might we want something di�erent?

Example: you go on a three-day trip to Australia and want to learn about the weather

X =
I

1 rain
0 no rain

Observe x(1) = 1, x(2) = 1, x(3) = 1

MLE learning æ ◊̂ = 1

It rains every day in Australia. What went wrong?
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Being Bayesian

A Bayesian says: give me the probability of ◊ given the data. What does this mean?

p(◊|Data) = p(◊)p(Data|◊)
p(Data)

I p(◊) is the prior. It encodes beliefs (either subjective or objective) about ◊ prior to
seeing any evidence. We need one!

I p(Data|◊) = rN
n=1 p(x(n)|◊) is the likelihood. It incorporates evidence.

I p(Data) =
s
p(◊)p(Data|◊)d◊ is the marginal likelihood or evidence. We usually

don’t need to compute it.
I p(◊|Data) is the posterior. What we believe about ◊ after observing data.
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Why Be Bayesian?

I Philosophy: Update subjective prior beliefs based on evidence.
I Practical: deal with small samples
I Practical: excellent tools exist (MCMC, stan)
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Making our Model Bayesian

◊ ≥ Uniform([0, 1])
x(n) ≥ Bernoulli(◊)
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Bayesian Modeling: Implications

I We now have a joint probability model p(◊, x)

p(◊, x) = p(◊)p(x|◊)

I ◊ is now a random variable instead of a fixed but unknown parameter
I Learning is replaced by posterior inference

I Learning: max◊ L(◊|x(1), . . . , x(N))
I Posterior inference: compute p(◊|x(1), . . . , x(N))
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Posterior Inference

p(◊|x(1:N)) = p(◊)p(x(1:N)|◊)
p(x(1:N))

Ã p(◊)p(x(1:N)|◊)

=
NŸ

n=1
◊I[x(n)=1](1 ≠ ◊)I[x(n)=0]

= ◊#(X=1)(1 ≠ ◊)#(X=0)

E.g., use MCMC to sample from density on [0, 1] proportional to this

General inference strategy: use MCMC to sample from density proportional to
p(◊)p(Data | ◊)

But in some special cases the problem is easy to solve without MCMC. . .
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Conjugate Bayesian Inference
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The Easy Case: Conjugacy

Some prior-likelihood pairs have a special relationship that makes computing the
posterior easy

This relationship is called conjugacy. It means the posterior p(◊|x) will be in the same
parametric family as the prior p(◊). E.g.

p(◊) = Beta(◊|a, b) =∆ p(◊|x) = Beta(◊|aÕ, bÕ)

We say:
I p(◊) is a conjugate prior for p(x|◊)
I p(◊) and p(x|◊) are a conjugate pair
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Example: Beta-Bernoulli Model

Likelihood: p(x|◊) = Bernoulli(x|◊)

Prior: p(◊) = Beta(◊|a, b)

Beta(◊|a, b) = �(a + b)
�(a)�(b)◊a≠1(1 ≠ ◊)b≠1, ◊ œ [0, 1]
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Beta Density
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Beta Density

Beta(◊|a, b) = �(a + b)
�(a)�(b)¸ ˚˙ ˝

normalization const.

◊a≠1(1 ≠ ◊)b≠1
¸ ˚˙ ˝
unnormalized density

, ◊ œ [0, 1]

Discuss
I Unnormalized density!
I Gamma function

I �(t) =
s Œ
0 zt≠1e≠zdz

I �(n) = (n ≠ 1)! for integer n
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Beta Density

Beta(◊|a, b) = �(a + b)
�(a)�(b)¸ ˚˙ ˝

normalization const.

◊a≠1(1 ≠ ◊)b≠1
¸ ˚˙ ˝
unnormalized density

, ◊ œ [0, 1]

Question: p(◊) Ã ◊2(1 ≠ ◊)4 on ◊ œ [0, 1]. What is normalized density?

p(◊) Ã ◊2(1 ≠ ◊)4

= ◊a≠1(1 ≠ ◊)b≠1 a = 3, b = 5

Ã �(8)
�(3)�(5)◊2(1 ≠ ◊)4 (normalized)

The point: recognize unnormalized density, get normalization constant for free
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Beta-Bernoulli Posterior
Observe x. Easy way: drop all terms that don’t involve ◊

p(◊|x) = p(◊)p(x|◊)s
p(◊Õ)p(x|◊Õ)d◊Õ

Ã p(◊)p(x|◊)

= �(a + b)
�(a)�(b)◊a≠1(1 ≠ ◊)b≠1 · ◊I[x=1](1 ≠ ◊)I[x=0]

Ã ◊a≠1+I[x=1](1 ≠ ◊)b≠1+I[x=0]

p(◊ |x) = Beta(◊ | a + I[x = 1], b + I[x = 0])

Result: posterior is also Beta (conjugate!). Add one to either a or b depending on
value of x.
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Beta-Bernoulli Belief Updating

Observe x(1), x(2), . . . , x(N), want to compute p(◊|x(1), . . . , x(N))

By applying the simple posterior update we just saw sequentially, we get

p(◊|x(1), . . . x(N)) = Beta
!
◊ | a + qN

n=1 I[x(n) = 1], b + qN
n=1 I[x(n) = 0]

"

= Beta
!
◊ | a + #(X = 1), b + #(X = 0)

"

Simple updates based on counting
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Beta-Bernoulli Belief Updating

Demo
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Mixture Model
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Mixture Model

Bayesian Modeling with generic inference techniques like MCMC is powerful. We can
write down a generative model that we think is a good match to our data and perform
inference.

Likelihood:

z ≥ Categorical(◊1, . . . , ◊K)
x ≥ N (µz, 10)

Prior:

◊ ≥ Dirichlet(1)
µz ≥ N (100, 20), z œ {1, . . . ,K}
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Mixture with Many Observations
Suppose we draw many (z(n), x(n)) pairs and observe only x(n) (i.e., z(n) is a latent
variables). Here’s what the graphical model looks like:
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Plate Notation
We can draw the same thing compactly in plate notation to indicate repetition
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Computing the Posterior

The posterior in this model looks like this:

p(◊,µ1:K , z
(1:N)|x(1:N))

= p(◊, µ1:K , z
(1:N), x(1:N))/p(x(1:N))

Ã p(◊)
KŸ

k=1
p(µk)

NŸ

n=1
p(z(n)|◊)

NŸ

n=1
p(x(n)|z(n), µ1:K)

We could sample from this unnormalized distribution using
MCMC.
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