
Metropolis-Hastings 000000000	MCMC Practical Aspects	Metropolis-Hastings •0000000000	MCMC Practical Aspects
COMPSCI 688: Probabilistic Graphical Models			
Lecture 16: Metropolis-Hastings and Practical Aspects			
		Metropolis-Hastings	
Dan Sheldon			
Manning College of Information and Computer Sciences			
University of Massachusetts Amherst			
Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umas	s.edu)		
	1 / 20		2 / 20
Metropolis-Hastings O©COCOCOCOCO	MCMC Practical Aspects	Metropolis-Hastings 00●00000000	MCMC Practical Aspects
The Metropolis-Hastings Sampler		Proposal and Acceptance MCMC Illustration	
The Metropolis Hastings sampler is an extremely general sampler base			
of "proposing" a new state with a proposal distribution $q(\mathbf{x'} \mathbf{x}),$ and "accepting" or "rejecting"	then		
 Like the Gibbs sampler, it can be used with continuous or discrete dist avoids computation of the partition function. 	ributions and		
 Unlike the Gibbs sampler, it doesn't require the ability to sample from conditional distributions. 	n the		
	3 / 20		4 / 20

Metropolis-Hastings 000@0000000	MCMC Practical Aspects	Metropolis-Hastings 0000000000	MCMC Practical Aspects
Proposal and Acceptance MCMC		How to Choose Acceptance Probability?	
Initialize x for $t = 1, 2, 3,, S$: Sample $x' \sim q(x' x)$ Look at x and x' , and calculate a probability $\alpha(x, x')$ of keeping x' . Choose $r \in [0, 1]$ uniformly If $r < \alpha(x, x')$ then $x \leftarrow x'$ $x^{(t)} \leftarrow x$ return $x^{(1)}, x^{(2)},, x^{(S)}$	5/20	The key missing step is how to set the acceptance probability $\alpha(x, x')$. It p and q . The transition probability density is $T(x' x) = \begin{cases} q(x' x)\alpha(x, x') & \text{if } x \neq x' \\ ? & \text{if } x = x' \end{cases}$ Our goal is to satisfy detailed balance, i.e., for all x, x' : $p(x)T(x' x) = p(x')T(x x')$ $\iff p(x)q(x' x)\alpha(x, x') = p(x')q(x x')\alpha(x', x)$ We don't care about $T(x' x)$ when $x = x'$, because the detailed balance always satsified for $x = x'$.	
Metropolis-Hastings 00000000000	MCMC Practical Aspects	Metropolis-Hastings 00000000000	MCMC Practical Aspects
There are different acceptance rules $\alpha(x, x')$ that ensure detailed balance. Metropolis-Hastings is based on the adjusting the larger "flow" to be equal smaller one. $\underbrace{p(x)q(x' x)}_{x \to x' \text{ flow}} \underbrace{\alpha(x, x')}_{\text{adjustment}} = \underbrace{p(x')q(x x')}_{x' \to x \text{ flow}} \underbrace{\alpha(x', x)}_{\text{adjustment}}$ The rule is • If $x \to x'$ flow $> x' \to x$ flow, set $\alpha(x, x')$ equal to their ratio, and set • If $p(x)q(x' x) > p(x')q(x x')$, set $\alpha(x, x') = \frac{p(x')q(x x')}{p(x)q(x' x)}$ and set $\alpha(x, x')$	$\alpha(x',x)=1$	By symmetry, the general Metropolis-Hastings acceptance rule is: $\overline{\alpha(x,x')=\min\left\{1,\frac{p(x')q(x x')}{p(x)q(x' x)}\right\}}$	
	7/20		

Metropolis-Hastings 0000000000000	MCMC Practical Aspects 0000000	Metropolis-Hastings 000000000000	MCMC Practical Aspects
Proof of Detailed Balance Claim: detailed balance holds with $\alpha(x, x') = \min\left\{1, \frac{p(x')q(x x')}{p(x)q(x' x)}\right\}$ Proof: First, consider when $p(x)q(x' x) > p(x')q(x x')$. Then $\alpha(x, x') =$ and $\alpha(x', x) = 1$, and we have $p(x)T(x' x) = p(x)q(x' x)\alpha(x, x')$ $= p(x)q(x' x)\frac{p(x')q(x x')}{p(x)q(x' x)}$ = p(x')q(x x') $= p(x')q(x x')\alpha(x', x)$ = p(x')T(x x').	$\frac{p(x')q(x x')}{p(x)q(x' x)}$	For the second case, we have $p(x')q(x x') > p(x)q(x' x)$. The proof is the s first case, with x and x' swapped.	ame as the
	9 / 20		10/20
Metropolis-Hastings 00000000000	MCMC Practical Aspects	Metropolis-Hastings oocoooocooeo	MCMC Practical Aspects
Metropolis-Hastings Algorithm		Gaussian Random Walk Sampler	
Initialize x for $t = 1, 2, 3, \dots, S$: Sample $x' \sim q(x' x)$ Choose $r \in [0, 1]$ uniformly if $r < \frac{p(x')Q(x x')}{p(x)Q(x' x)}$ then $x \leftarrow x'$ $x^{(t)} \leftarrow x$ return $x^{(1)}, x^{(2)}, \dots, x^{(S)}$		A simple proposal uses a Gaussian random walk as the proposal distribution $\mathbf{x}' \sim \mathcal{N}(\mathbf{x}' \mathbf{x}, \sigma^2 I)$ By symmetry, the acceptance probability simplifies $\alpha(\mathbf{x}', \mathbf{x}) = \frac{p(\mathbf{x}')\mathcal{N}(\mathbf{x} \mathbf{x}', \sigma^2 I)}{p(\mathbf{x})\mathcal{N}(\mathbf{x}' \mathbf{x}, \sigma^2 I)} = \frac{p(\mathbf{x}')}{p(\mathbf{x})}$:
	11 / 20		12/20

Metropolis-Hastings oocooocoooooooooooooooooooooooooooooo	IC Practical Aspects 0000	Metropolis-Hastings 000000000000000000000000000000000000	
Demo: Gaussian Random Walk Sampler			
		MCMC Practical Aspects	
Metropolis-Hastings cocococococo ooc	13 / 20 IC Practical Aspects 0000	14/20 Metropolis-Hastings 000000000000000000000000000000000000	
Issues with MCMC		Burn-in Time	
 Burn-in: The underlying Markov chains take time to converge to the distribution of interest. The time needed to reach the stationary distribution of the chain is called the <i>burn-in time</i>. Autocorrelation: Consecutive samples drawn from the chain at equilibrium may be highly correlated with each other. The time lag between samples that are approximately independent of each other is called the <i>autocorrelation time</i> of the chain. 		 The most fundamental issue with burn-in is that, in the absence of a theoretical lower bound, you can never be exactly sure that the chain has converged to the equilibrium distribution. MCMC practitioners usually rely on heuristic convergence diagnostics to assess burn-in time. One of the most useful heuristics is to run multiple chains from different starting points and track one or more scalar functions of the state of the chain (the log probability of the data is often a good choice). The distribution of values of these functions will all converge to the same mean and 	
		 The distribution of values of these functions will all converge to the same mean and variance at equilibrium. 	
	15 / 20	16/20	

