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Markov Chain Theory

2 / 34

Markov Chain Theory Understanding MCMC Detailed Balance

Markov Chains
A discrete Markov chain is a set of states with transition probabilities between each
pair of states. Example (note: not a graphical model!)
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Transition Matrix

▶ The probabilistic transitions in the state diagram can also be represented by an
equivalent matrix of transition probabilities.

▶ The “from" states are rows and the”to" states are columns.
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Markov Chains: Simulation and State Sequences

▶ To simulate a Markov chain, we draw x0 ∼ p0, then repeatedly sample xt+1 given
the current state xt according to the transition probabilities T .
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Markov Chain: Formal Definition

By repeatedly making random transitions from a starting state, we generate a chain of
random variables X0, X1, X2, X3, . . ..

Formally, a Markov chain is specified by:
▶ A set of states {1, 2, . . . , D}
▶ A starting distribution p0 with p0(i) = P (X0 = i).
▶ Transition probabilities Tij = P (Xt+1 = j | Xt = i) for all i, j ∈ {1, 2, . . . , D}

A Markov chain assumes the Markov property:

P (Xt = xt | X0 = x0, X1 = x1, . . . , Xt−1 = xt−1) = P (Xt = xt | Xt−1 = xt−1)
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Markov Chain Questions

Three important questions:

1. What is the joint probability of a sequence of states of length N?

2. What is the marginal probability distribution over states after a given number of
steps t?

3. What happens to the probability distribution over states in the limit as t goes to
infinity?
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Markov Chain Factorization

Question: What is the joint probability over the state sequence x0, ..., xN ?

Answer: by the Markov property:

P (X1 = x1, . . . , XN = xN |X0 = x0) = P (X1 = x1|X0 = x0) × P (X2 = x2|X1 = x1) × · · ·
×P (XN = xN |XN−1 = xN−1)

Shorter version:

p(x1, x2, . . . , xN |x0) = p(x1|x0)p(x2|x1) . . . p(xN |xN−1)
= Tx0x1 × Tx1x2 × · · · × TxN−1xN
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The t-Step Distribution for Fixed x0

Question: What is the marginal probability distribution after t steps given that the
chain starts at x0? I.e., what is p(xt|x0)?

Examples:
p(x1|x0) = Tx0x1 .

p(x2|x0) =
∑

x1

p(x1, x2|x0) =
∑

x1

p(x1|x0)Tx1x2 .

In general, we have the recursive expression:

p(xt|x0) =
∑

xt−1

p(xt−1, xt|x0) =
∑

xt−1

p(xt−1|x0)Txt−1xt .

9 / 34

Markov Chain Theory Understanding MCMC Detailed Balance

The t-Step Distribution for Random X0

Question: What is the marginal probability distribution after t steps given that
X0 ∼ p0? I.e., what is p(xt)?

By similar logic:
p(x1) =

∑

x0

p(x0, x1) =
∑

x0

p(x0)Tx0x1 .

p(x1) =
∑

x0

p(x1, x2) =
∑

x1

p(x1)Tx1x2 .

In general:
p(xt) =

∑

xt−1

p(xt−1, xt) =
∑

xt−1

p(xt−1)Txt−1xt .
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t-Step Recurrence as Matrix-Vector Multiplication

The recurrences for the t-step distributions can be expressed using matrix-vector
multiplciation. Let pt be the row-vector

pt = [P (Xt = 1), P (Xt = 2), . . . , P (Xt = D)].

Then, since Tij = P (Xt = j|Xt−1 = i), we can write the above recursive relationship as

pt = pt−1T.
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t-Step Distribution as Matrix Power

By unrolling the recurrence, the t-step distribution can be obtained as a matrix power

pt = pt−1T

= (pt−1)T
= (pt−2T )T
= (pt−2)TT

= (pt−3T )TT

...
= p0 TT . . . T︸ ︷︷ ︸

t times
.
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Thus
pt = p0T t.

This also implies that T t is the t-step transition matrix

(T t)ij = P (Xt = j|X0 = i) = P (Xs+t = j|Xs = i)
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One-Slide Summary So Far
▶ Markov chain: defined by initial distribution p0 ∈ RD, transition matrix T ∈ RD×D

p0(i) = P (X0 = i), Tij = P (Xt = j | Xt−1 = j)

▶ Defines distribution of chain X0, X1, X2, . . . , Xt, . . . (with Markov assumption)
▶ Joint probability

p(x1, x2, . . . , xN |x0) = p(x1|x0)p(x2|x1) · · · p(xN−1|xN )

▶ Recurrence for t-step distribution: p(xt) = ∑
xt−1 p(xt−1)Txt−1xt

▶ Recurrence as matrix-vector multiplication. Let pt ∈ RD with pt(i) = P (Xt = i).
Then

pt = pt−1T

▶ Next: what happens as t → ∞?
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Limiting Distribution
What happens as t becomes large? Does pt converge to a some limiting distribution π?
That is, is there some π such that the following is true?

lim
t→∞

pt = π (limiting distribution)

The algorithmic idea of Markov chain Monte Carlo is:
▶ Suppose π is hard to sample from directly
▶ If we can design a Markov chain such that limt→∞ pt = π, then we can draw

samples by simulating the Markov chain for many time steps
▶ It’s remarkable that this could be possible, but it can be done for very general

target distributions!
▶ We need to reason about limiting distributions their properties
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Stationary Distribution

Suppose a chain converges exactly, so that pt = pt+1 = π. Since pt+1 = ptT , this
implies

π = πT (stationary distribution)

▶ we call any such π a stationary distribution of the Markov chain
▶ If you start from π and run the chain for any number of steps, the distribution is

unchanged.
▶ If π is a limiting distribution, it is a stationary distribution
▶ (Linear algebra connection: π is an eigenvector of T with eigenvalue 1. Useful for

computing stationary distributions.)
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Stationary and Limiting Distributions

We reason about limiting distributions via stationary distributions:
▶ If a Markov chain: (1) converges, and (2) has a unique stationary distribution π,

then it converges to π.
▶ When can we guarantee (1) and (2)? What could go wrong?
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What Could Go Wrong: Periodicity
A Markov chain can fail to converge by being periodic:
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What Could Go Wrong: Reducibility
A Markov chain can fail to have a unique stationary distribution by being reducible:
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Regularity

A Markov chain is regular if there exists a t such that, for all i, j pairs,

(T t)ij > 0,

▶ Recall that T t is the t-step transition probability matrix. This means it is possible
to get from any state i to any state j in exactly t steps.

▶ A regular Markov chain cannot be periodic or reducible (why?), and guarantees the
desired computational property

Theorem: A regular Markov chain has a unique stationary distribution π and
limt→∞ pt = π for all starting distributions p0.

(We can sample from the unique stationary distribution by simulating the chain.)
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Summary: Markov Chain Theory

▶ t-step distribution: Distribution of Xt, obtained by repeated multiplication with
transition matrix: pt = p0T t

▶ Limiting distribution: the distribution of limt→∞ pt, if it exists
▶ Stationary distribution: a distribution π such that πT = π. If you start from π

and run the chain for any number of steps, the distribution is unchanged. Every
limiting distribution is a stationary distribution.

▶ Regularity: if there is a t such that (T t)ij > 0 for all i, j, a Markov chain is
regular. It is possible to get from any state i to any state j in exactly t steps.

▶ Convergence to stationary distribution: if T is regular, the chain converges to a
unique stationary distribution π for any starting distribution.
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Understanding MCMC
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High-Level Idea

Suppose we want to sample from p, but can’t do so directly. Instead, we can
▶ Design a Markov chain that has p as a stationary distribution
▶ Run it for a long time to get a sequence of states x1, x2, . . . , xS

▶ Approximate an expectation as

Ep(X)[f(X)] ≈ 1
S

S∑

t=1
f(xt).
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If we run the chain long enough, the approximation will be good! We can often make
the following guarantees:

▶ Asymptotically correct: limS→∞ 1
S

∑S
t=1 f(xt) = Ep(X)[f(X)]

▶ Variance decreases like 1/S

▶ The chain converges exponentially quickly to the stationary distribution, so bias
decreases quickly. (But in practice, we almost never know the rate!)
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Some concerns:
▶ X1, X2, . . . are not true samples from p, especially early in the chain
▶ X1, X2, . . . , XS are not independent
▶ How to create a Markov chain with p as a stationary distribution?
▶ How to make sure that p is the only stationary distibution?
▶ How long to run the chain ?
▶ How to initialize the chain?
▶ What is the best Markov chain?
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MCMC for Multivariate Distributions

▶ To sample from a multivariate distribution p(x) for x ∈ RD, an MCMC algorithm
generates a sequence of states

x1, x2, x3, . . . , xS

▶ Each xt = (xt1, . . . , xtD) is a full vector — with a setting for each variable
▶ The state space of the Markov chain is the full domain x ∈ Val(X). E.g., with D

binary variables, the Markov chain has 2D states.
▶ Because state spaces are huge, MCMC algorithms specify rules for random

transitions between states without materializing the full transition matrix.
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Example: Binary MRF
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Detailed Balance
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The Burning Question

How to design a Markov chain with a stationary distribution π(x)?

We will first introduce detailed balance, a sufficient condition for π(x) to be a
stationary distribution of a Markov chain T

Then we will design sampling algorithms (i.e., Markov chains) that, by construction

1. Are regular
2. Satisfy detailed balance with respect to π(x)

These together will imply that the chain converges to π, which is the unique stationary
distribution

30 / 34

Markov Chain Theory Understanding MCMC Detailed Balance

Detailed Balance
A Markov chain T satisfies detailed balance with respect to a distribution π if ∀x, x′,

π(x)T (x′|x) = π(x′)T (x|x′).
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Detailed Balance Interpretation
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Detailed Balance =⇒ Stationary

Theorem: If T satisfies detailed balance with respect to π then π is a stationary
distribution of T .

Proof: Let π′ = πT be the result of running the Markov chain for 1 iteration. Then

π′(x′) =
∑

x

π(x)T (x′|x) (definition of π′ = πT )

=
∑

x

π(x′)T (x|x′) (detailed balance)

= π(x′)
∑

x

T (x|x′) (
∑

x

T (x|x′) = 1)

= π(x′).
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