A Quiz Question	Application Example 00	Monte Carlo Methods 0000	Gibbs Sampling 00000	A Quiz Question •00	Application Example 00	Monte Carlo Methods 0000	Gibbs Sampling 00000		
	COMPSCI 688: Probat Lecture 13: Introduction to	pilistic Graphical Models	5						
	Dan Sheldon				A Quiz Question				
	Manning College of Information and Computer Sciences University of Massachusetts Amherst								
Parti	ially based on materials by Benjamin M. Marlin (marlir	n@cs.umass.edu) and Justin Domke (domke@cs.um:	sss.edu)						
			1 / 15				2/15		
A Quiz Question	Application Example	Monte Carlo Methods 0000	Gibbs Sampling 00000	A Quiz Question	Application Example 00	Monte Carlo Methods 0000	Gibbs Sampling		
A Quiz Ques Consider an Suppose you	exponential family on $x_1, x_2 \in$ u use the data below to estimat	$\{0,1\}$ with $T(x_1,x_2)=\mathbb{I}[x_1+1]$ e maximum likelihood parame	$x_{1}=1, x_{2}=1].$ ters:						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-								
At the maxi	mum likelihood estimate $ heta^*$, wh	hat will be $P_{\theta^*}(X_1 = 1, X_2 =$	1)?						

A Quiz Question 000	Application Example O	Monte Carlo Methods 0000	Gibbs Sampling 00000	A Quiz Question	Application Example	Monte Carlo Methods 0000	Gibbs Sampling 00000	
				Covid Model				
	Applicatio	n Example						
				Showed Covid modeling example w/ NumPyro. See Jupyter notebook				
			5 / 15				6/15	
A Quiz Question	Application Example 00	Monte Carlo Methods ©000	Gibbs Sampling 00000	A Quiz Question 000	Application Example 00	Monte Carlo Methods 0€00	Gibbs Sampling 00000	
				Motivation				
				Computing expectations is important!				
Monte Carlo Methods				$\mathbb{E}_{p(x)}[f(X)] = \int p(x)f(x)dx$				
				Example: sur	mose $p(\mathbf{x})$ is an MRF then			
					$P(X = a X = b) = \mathbb{I}$	$\mathbf{F} \mapsto \begin{bmatrix} \mathbf{I} \begin{bmatrix} \mathbf{Y} & -\mathbf{g} & \mathbf{Y} & -\mathbf{h} \end{bmatrix} \end{bmatrix}$		
					$I(\Lambda_u = u, \Lambda_v = 0) = \mathbb{I}$	$\mathbb{E}_{p(\mathbf{X})}\left[\mathbb{E}[\Lambda_u = u, \Lambda_v = v]\right]$		
				In general, cor	nputing expectations is hard,	so we need an approximation.		
			7 / 15				8/15	

A Quiz Question 000	Application Example 00	Monte Carlo Methods 0000	Gibbs Sampling	A Quiz Question	Application Example OO	Monte Carlo Methods 0000	Gibbs Sampling 000€0
The Gibbs Sampler			Example: Cycle MRF				
					$)=\prod_{i=1}^n\phi(x_i,x_{i+1}) \pmod{n}$)	
A simple and	powerful algorithm! Assume 2	$\mathbf{X} = (X_1, \dots, X_D).$					
Initialize all va its conditional	riables arbitrarily, then repeat distribution given all other v	tedly update each variable by san ariables.	npling from				
Gibbs sample	er						
 Initialize : Repeat For i Reco 	x_1, \dots, x_D = 1 to D , resample $x_i \sim p(X_i$ rd $\mathbf{x} = (x_1, \dots, x_D)$ as one sam	$ \mathbf{X}_{-i} = \mathbf{x}_{-i})$ ple					
One sample is generated after each loop through all of the variables.				Then $p(x_i \mathbf{x})$	$(-i) \propto \phi(x_{i-1}, x_i)\phi(x_i, x_{i+1})$ ((factor reduction!)	
				For a general	MRF: $p(x_i \mathbf{x}_{-i}) \propto \prod_{c:i \in c} \phi_c$	$(x_i, \mathbf{x}_{c \setminus i})$	
			13 / 15				14 / 15
A Quiz Question 000	Application Example 00	Monte Carlo Methods 0000	Gibbs Sampling				
The Gibbs San	npler: Properties						
 The Gibb regardless 	s sampler eventually draws sa s of how it is initialized.	amples from the target distribution	on $p(\mathbf{x})$				
It can tak algorithm	time to converge to the tain is referred to as the "burn-ir	rget distribution $p(\mathbf{x})$. This phase of the algorithm.	e of the				
 Convergence to the target distribution needs to be tested empirically in most cases using convergence diagnostics. 							
Even after convergence, the samples are not independent, but can still be used in Monte Carlo averages. The degree of correlation of the samples affects the rate of convergence of Monte Carlo averages.							
			15 / 15				