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A Quiz Question
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A Quiz Question

Consider an exponential family on x1, x2 ∈ {0, 1} with T (x1, x2) = I[x1 = 1, x2 = 1].
Suppose you use the data below to estimate maximum likelihood parameters:

x1 x2

1 1
1 0
1 1
0 1

At the maximum likelihood estimate θ∗, what will be Pθ∗(X1 = 1, X2 = 1)?
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Application Example
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Covid Model

Showed Covid modeling example w/ NumPyro. See Jupyter notebook
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Monte Carlo Methods

7 / 15

A Quiz Question Application Example Monte Carlo Methods Gibbs Sampling

Motivation

Computing expectations is important!

Ep(x)[f(X)] =
∫

p(x)f(x)dx

Example: suppose p(x) is an MRF, then

P (Xu = a, Xv = b) = Ep(x)
[
I[Xu = a, Xv = b]

]

In general, computing expectations is hard, so we need an approximation.
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Monte Carlo methods

In a Monte Carlo method, we approximate an expected value by a sample average. Draw
N samples X1, . . . , XN ∼ p(x), then

Ep(x)[f(X)] ≈ 1
N

N∑

n=1
f(Xn).

Nice properties:
▶ Unbiased
▶ Variance decreases like 1

N .
▶ Measure arbitrary properties by choosing f .

Not nice properties: sampling is algorithmically/computationally hard in general
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Examples
Suppose we have p(x) = 12(x2 − x3), where x ∈ [0, 1]. Or suppose we have an MRF
with a cycle.

10
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x
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Question: How do we sample from these distributions? Answer: We need an algorithm.
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Gibbs Sampling
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Markov Chain Monte Carlo Overview

▶ Markov chain Monte Carlo (MCMC) methods iteratively construct samples from a
given “target distribution” p(x)

▶ They require only access to the unnormalized distribution, so can apply easily to
models like MRFs.

▶ Formally, they work by constructing a Markov chain that has the target distribution
p(x) as its limiting distribution.

▶ We’ll introduce one MCMC method today, and then start to develop some of the
theory needed to understand the algorithm.

▶ Importance / applications: statistical physics, econometrics, ecology, epidemiology,
weather modeling, . . .
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The Gibbs Sampler

A simple and powerful algorithm! Assume X = (X1, . . . , XD).

Initialize all variables arbitrarily, then repeatedly update each variable by sampling from
its conditional distribution given all other variables.

Gibbs sampler
▶ Initialize x1, . . . , xD

▶ Repeat
▶ For i = 1 to D, resample xi ∼ p(Xi | X−i = x−i)
▶ Record x = (x1, . . . , xD) as one sample

One sample is generated after each loop through all of the variables.
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Example: Cycle MRF
Suppose p(x) = ∏n

i=1 ϕ(xi, xi+1) (mod n)

Then p(xi|x−i) ∝ ϕ(xi−1, xi)ϕ(xi, xi+1) (factor reduction!)

For a general MRF: p(xi|x−i) ∝ ∏
c:i∈c ϕc(xi, xc\i)
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The Gibbs Sampler: Properties

▶ The Gibbs sampler eventually draws samples from the target distribution p(x)
regardless of how it is initialized.

▶ It can take time to converge to the target distribution p(x). This phase of the
algorithm is referred to as the “burn-in” phase of the algorithm.

▶ Convergence to the target distribution needs to be tested empirically in most cases
using convergence diagnostics.

▶ Even after convergence, the samples are not independent, but can still be used in
Monte Carlo averages. The degree of correlation of the samples affects the rate of
convergence of Monte Carlo averages.
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