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A Quiz Question

Consider an exponential family on x1, x2 œ {0, 1} with T (x1, x2) = I[x1 = 1, x2 = 1].
Suppose you use the data below to estimate maximum likelihood parameters:

x1 x2

1 1
1 0
1 1
0 1

At the maximum likelihood estimate ◊ú, what will be P◊ú(X1 = 1, X2 = 1)?
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Monte Carlo Methods
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Motivation

Computing expectations is important!

Ep(x)[f(X)] =
⁄

p(x)f(x)dx

Example: suppose p(x) is an MRF, then

P (Xu = a,Xv = b) = Ep(x)
#
I[Xu = a,Xv = b]

$

In general, computing expectations is hard, so we need an approximation.
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Monte Carlo methods

In a Monte Carlo method, we approximate an expected value by a sample average. Draw
N samples X1, . . . ,XN ≥ p(x), then

Ep(x)[f(X)] ¥ 1
N

Nÿ

n=1
f(Xn).

Nice properties:
I Unbiased
I Variance decreases like 1

N .
I Measure arbitrary properties by choosing f .

Not nice properties: sampling is algorithmically/computationally hard in general
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Examples
Suppose we have p(x) = 12(x2 ≠ x3), where x œ [0, 1]. Or suppose we have an MRF
with a cycle.

10

p(x)

x
Viewer does not support full SVG 1.1

Question: How do we sample from these distributions?

Answer: We need an algorithm.
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Gibbs Sampling
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Markov Chain Monte Carlo Overview

I Markov chain Monte Carlo (MCMC) methods iteratively construct samples from a
given “target distribution” p(x)

I They require only access to the unnormalized distribution, so can apply easily to
models like MRFs.

I Formally, they work by constructing a Markov chain that has the target distribution
p(x) as its limiting distribution.

I We’ll introduce one MCMC method today, and then start to develop some of the
theory needed to understand the algorithm.

I Importance / applications: statistical physics, econometrics, ecology, epidemiology,
weather modeling, . . .
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The Gibbs Sampler

A simple and powerful algorithm! Assume X = (X1, . . . ,XD).

Initialize all variables arbitrarily, then repeatedly update each variable by sampling from
its conditional distribution given all other variables.

Gibbs sampler
I Initialize x1, . . . , xD
I Repeat

I For i = 1 to D, resample xi ≥ p(Xi |X≠i = x≠i)
I Record x = (x1, . . . , xD) as one sample

One sample is generated after each loop through all of the variables.
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Example: Cycle MRF
Suppose p(x) = rn

i=1 „(xi, xi+1) (mod n)

Then p(xi|x≠i) Ã „(xi≠1, xi)„(xi, xi+1) (factor reduction!)

For a general MRF: p(xi|x≠i) Ã r
c:iœc „c(xi,xc\i)
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The Gibbs Sampler: Properties

I The Gibbs sampler eventually draws samples from the target distribution p(x)
regardless of how it is initialized.

I It can take time to converge to the target distribution p(x). This phase of the
algorithm is referred to as the “burn-in” phase of the algorithm.

I Convergence to the target distribution needs to be tested empirically in most cases
using convergence diagnostics.

I Even after convergence, the samples are not independent, but can still be used in
Monte Carlo averages. The degree of correlation of the samples a�ects the rate of
convergence of Monte Carlo averages.
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Markov Chain Theory
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Markov Chains
A discrete Markov chain is a set of states with transition probabilities between each
pair of states. Example (note: not a graphical model!)
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Transition Matrix

I The probabilistic transitions in the state diagram can also be represented by an
equivalent matrix of transition probabilities.

I The “from" states are rows and the”to" states are columns.
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Markov Chains: Simulation and State Sequences

I To simulate a Markov chain, we draw x0 ≥ p0, then repeatedly sample xt+1 given
the current state xt according to the transition probabilities T .
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Markov Chain: Formal Definition

By repeatedly making random transitions from a starting state, we generate a chain of
random variables X0, X1, X2, X3, . . ..

Formally, a Markov chain is specified by:
I A set of states {1, 2, . . . ,D}
I A starting distribution p0 with p0(i) = P (X0 = i).
I Transition probabilities Tij = P (Xt+1 = j |Xt = i) for all i, j œ {1, 2, . . . ,D}

A Markov chain assumes the Markov property:

P (Xt = xt |X0 = x0, X1 = x1, . . . ,Xt≠1 = xt≠1) = P (Xt = xt |Xt≠1 = xt≠1)
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Markov Chain Questions

Three important questions:

1. What is the joint probability of a sequence of states of length N?

2. What is the marginal probability distribution over states after a given number of
steps t?

3. What happens to the probability distribution over states in the limit as t goes to
infinity?
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Markov Chain Factorization

Question: What is the joint probability over the state sequence x0, ..., xN?

Answer: by the Markov property:

P (X1 = x1, . . . ,XN = xN |X0 = x0) = P (X1 = x1|X0 = x0) ◊ P (X2 = x2|X1 = x1) ◊ · · ·
◊P (XN = xN |XN≠1 = xN≠1)

Shorter version:

p(x1, x2, . . . , xN |x0) = p(x1|x0)p(x2|x1) . . . p(xN |xN≠1)
= Tx0x1 ◊ Tx1x2 ◊ · · · ◊ TxN≠1xN
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The t-Step Distribution for Fixed x0

Question: What is the marginal probability distribution after t steps given that the
chain starts at x0? I.e., what is p(xt|x0)?

Examples:
p(x1|x0) =

Tx0x1 .

p(x2|x0) =

ÿ

x1

p(x1, x2|x0) =
ÿ

x1

p(x1|x0)Tx1x2 .

In general, we have the recursive expression:

p(xt|x0) =

ÿ

xt≠1

p(xt≠1, xt|x0) =
ÿ

xt≠1

p(xt≠1|x0)Txt≠1xt .
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The t-Step Distribution for Random X0

Question: What is the marginal probability distribution after t steps given that
X0 ≥ p0? I.e., what is p(xt)?

By similar logic:
p(x1) =

ÿ

x0

p(x0, x1) =
ÿ

x0

p(x0)Tx0x1 .

p(x2) =

ÿ

x0

p(x1, x2) =
ÿ

x1

p(x1)Tx1x2 .

In general:
p(xt) =

ÿ

xt≠1

p(xt≠1, xt) =
ÿ

xt≠1

p(xt≠1)Txt≠1xt .
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t-Step Recurrence as Matrix-Vector Multiplication

The recurrences for the t-step distributions can be expressed using matrix-vector
multiplciation. Let pt be the row-vector

pt = [P (Xt = 1), P (Xt = 2), . . . , P (Xt = D)].

Then, since Tij = P (Xt = j|Xt≠1 = i), we can write the above recursive relationship as

pt = pt≠1T.
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t-Step Distribution as Matrix Power

By unrolling the recurrence, the t-step distribution can be obtained as a matrix power

pt = pt≠1T

= (pt≠1)T
= (pt≠2T )T
= (pt≠2)TT
= (pt≠3T )TT

...
= p0 TT . . . T¸ ˚˙ ˝

t times
.
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Thus
pt = p0T

t.

This also implies that T t is the t-step transition matrix

(T t)ij = P (Xt = j|X0 = i) = P (Xs+t = j|Xs = i)
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