A Quiz Question 000	Monte Carlo Methods 0000	Gibbs Sampling 00000	Markov Chain Theory	A Quiz Question •00	Monte Carlo Methods 0000	Gibbs Sampling 00000	Markov Chain Theory	
	COMPSCI 688: Probab Lecture 13: Introduction to Dan SI	ilistic Graphical Mod Markov Chain Monte Carl heldon	els º		A Quiz Question			
	Manning College of Informa University of Mass	tion and Computer Sciences achusetts Amherst						
Partiall	y based on materials by Benjamin M. Marlin (marlin	@cs.umass.edu) and Justin Domke (domke@c	s.umass.edu)					
			1 / 26				2 / 26	
A Quiz Question	Monte Carlo Methods 0000	Gibbs Sampling 00000	Markov Chain Theory	A Quiz Question 00●	Monte Carlo Methods 0000	Gibbs Sampling 00000	Markov Chain Theory	
A Quiz Quest	ion							
Consider an e Suppose you	exponential family on $x_1, x_2 \in$ use the data below to estimate data cxp.	$\{0,1\}$ with $T(x_1,x_2) = \mathbb{I}[x_1,x_2]$ e maximum likelihood para c model exp.	$x_1 = 1, x_2 = 1].$ meters:					
$\begin{array}{c c} x_1 & x_2 \\ \hline 1 & 1 \\ 1 & 0 \\ \hline \end{array}$	€[T(»] €[I[x=1, x=1]	$= \mathbb{E}_{Po^*} [\mathcal{T}(X)]$ $= \mathbb{E}_{Po^*} [\mathcal{I}[X_{I^{=1}}],$	ײ=1]]					
	- " \}_							
At the maxim	num likelihood estimate $ heta^*$, wh	at will be $P_{\theta^*}(X_1 = 1, X_2$	=1)? /2					
			3/26				4 / 26	

A Quiz Question 000	Monte Carlo Methods 0000	Gibbs Sampling 00000	Markov Chain Theory 0000000€000000	A Quiz Question	Monte Carlo Methods	Gibbs Sampling 00000	Markov Chain Theory		
The <i>t</i> -Step Di	stribution for Fixed x_0			The <i>t</i> -Step Distribution for Random X_0					
Question: W chain starts a	/hat is the marginal probability d t x_0 ? I.e., what is $p(x_t x_0)$?	listribution after t steps ${}_{\!$	iven that the	Question: W $X_0 \sim p_0$? I.e	/hat is the marginal probability ., what is $p(x_t)$?	y distribution after t steps ;	given that		
Examples: $p(x_1 x_0) =$				By similar logic: $p(x_1) =$					
	$p(x_2 x_0) =$				$p(x_2) =$				
In general, we	e have the recursive expression:			In general:					
	$p(x_t x_0) =$				$p(x_t) =$				
			21/26				22 / 26		
A Quiz Question	Monte Carlo Methods 0000	Gibbs Sampling 00000	Markov Chain Theory	A Quiz Question 000	Monte Carlo Methods 0000	Gibbs Sampling 00000	Markov Chain Theory		
t-Step Recurre	ence as Matrix-Vector Mu	ultiplication							
The recurrenc multiplciation	tes for the $t\mbox{-step}$ distributions call . Let p_t be the row-vector	n be expressed using ma	trix-vector						
	$p_t = [P(X_t = 1), P(X_t =$	$= 2), \ldots, P(X_t = D)].$							
Then, since T	$T_{ij} = P(X_t = j X_{t-1} = i), we can$	n write the above recursi	ve relationship as						
	$p_t = p_{t-1}$	$_{-1}T.$							
			23 / 26				24 / 26		

