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Exponential Families

An exponential family defines a set of distributions with densities of the form

pθ(x) = h(x) exp(θ⊤T (x) − A(θ))

▶ θ: “(natural) parameters”
▶ T (x): “sufficient statistics”
▶ A(θ): “log-partition function”
▶ h(x): “base measure” (we’ll usually ignore)
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Interpretation (h(x) = 1)

pθ(x) = exp(θ⊤T (x) − A(θ))

▶ θ⊤T (x) is a real-valued “score” (positive or negative), defined in terms of
“features” T (x) and parameters θ

▶ exp(θ⊤T (x)) is an unnormalized probability
▶ The log-partition function A(θ) = log Z(θ) ensures normalization

pθ(x) = exp(θ⊤T (x))
exp(A(θ)) , A(θ) = log Z(θ) = log

∫
exp(θ⊤T (x))dx

▶ Valid parameters are the ones for which the integral for A(θ) is finite.

4 / 28



Exponential Families Properties of Exponential Families Learning in Exponential Families

Applications and Importance

▶ We can get many different families of distributions by selecting different “features”
T (x) for a variable x in some sample space:

▶ Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, . . .

▶ There is a general theory that covers learning and other properties of all of these
distributions!

▶ A good trick to seeing that a distribution belongs to an exponential family is to
match its log-density to

log pθ(x) = log h(x) + θ⊤T (x) − A(θ)
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Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models,
observe that the unnormalized probability factors over “simpler” functions, just like
graphical models:

exp(θ⊤T (x)) = exp
∑

i

θiTi(x) =
∏

i

exp(θiTi(x))

(Think: what could T (x) look like to recover a graphical model?)

6 / 28

Exponential Families Properties of Exponential Families Learning in Exponential Families

Example: Bernoulli Distribution

The Bernoulli distribution with parameter µ ∈ [0, 1] has density (pmf)

pµ(x) =
{

µ x = 1
1 − µ x = 0

One way to write the log-density is

log pµ(x) = I[x = 1] log µ + I[x = 0] log(1 − µ)

To match this to an exponential family

log pθ(x) = log h(x) + θ⊤T (x) − A(θ),

7 / 28

Exponential Families Properties of Exponential Families Learning in Exponential Families

8 / 28



Exponential Families Properties of Exponential Families Learning in Exponential Families

Review: Bernoulli Distribution

To match this to an exponential family log pθ(x) = log h(x) + θ⊤T (x) − A(θ), take
▶ h(x) = 1
▶ T (x) = (I[x = 1], I[x = 0])
▶ θ = (log µ, log(1 − µ))

▶ exp(θ⊤T (x)) =
{

eθ1 x = 1
eθ2 x = 0

▶ A(θ) = log(eθ1 + eθ2)
▶ It’s easy to check that A(θ) = 0 when θ = (log µ, log(1 − µ))
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Example: Bernoulli, Single Parameter
We can also write the Bernoulli as a single-parameter exponential family. Rewrite the
log-density as

log pµ(x) = log(1 − µ) + x log µ

1 − µ

10 / 28

Exponential Families Properties of Exponential Families Learning in Exponential Families

Review: Bernoulli, Single Parameter

▶ h(x) = 1
▶ T (x) = I[x = 1] = x
▶ θ = log µ

1−µ

▶ exp(θ⊤x) =
{

eθ x = 1
1 x = 0

▶ A(θ) = log(1 + eθ)
▶ It’s easy to check that log(1 + eθ) = − log(1 − µ) when θ = log µ

1−µ

11 / 28

Exponential Families Properties of Exponential Families Learning in Exponential Families

Example: Normal Distribution

pµ,σ2(x) = 1√
2πσ2

exp
( − 1

2σ2 (x − µ)2)
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Review: Normal Distribution

pµ,σ2(x) = 1√
2πσ2

exp
( − 1

2σ2 (x − µ)2)

= 1√
2πσ2

exp
( − 1

2σ2 (x2 − 2xµ + µ2)
)

log pµ,σ2(x) = x2 · −1
2σ2 + x · µ

σ2 − µ2

2σ2 − log(
√

2πσ2)

▶ h(x) = 1
▶ T (x) = (x2, x)
▶ θ = ( −1

2σ2 , µ
σ2 )

▶ A(θ) = log
∫

exp(x2θ1 + xθ2)dx = . . . = µ2

2σ2 + log(
√

2πσ2)

Note: we need θ1 < 0; why?
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Properties of Exponential Families
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Properties of Log-Partition Function

The log-partition function A(θ) has two critical properties that relate its derivatives to
moments (expectations) of the sufficient statistics T (X).
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First Derivative of A(θ) ≡ First Moment of T (X)

∂

∂θ
A(θ) = Epθ

[T (X)]

Proof: (assume h(x) ≡ 1)

∂

∂θ
log

∑

x

exp(θ⊤T (x)) = 1∑
x exp(θ⊤T (x))

∂

∂θ

∑

x

exp(θ⊤T (x))

= 1
Z(θ)

∑

x

exp(θ⊤T (x)) ∂

∂θ
θ⊤T (x)

=
∑

x

exp(θ⊤T (x))
Z(θ) · T (x)

=
∑

x

pθ(x) · T (x)

= Epθ
[T (X)] 16 / 28



Exponential Families Properties of Exponential Families Learning in Exponential Families

Second Derivative of A(θ) ≡ Second Moment of T (X)

∂2

∂θ ∂θ⊤ A(θ) = Varpθ
[T (X)]

Notation: ∂2

∂θ ∂θ⊤ A(θ) is the Hessian matrix of A(θ). The (i, j)th entry is ∂2

∂θi ∂θj
A(θ).

Proof: algebra

Important consequence: A(θ) is convex
▶ Variance is PSD =⇒ Hessian is PSD =⇒ A convex
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Learning in Exponential Families
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Log-Likelihood
The average log-likelihood in an exponential family is

L(θ) = 1
N

N∑

n=1
log pθ(x(n))

= 1
N

N∑

n=1

(
θ⊤T (x(n))

)
− A(θ) + 1

N

N∑

n=1
log h(x(n))

= θ⊤
( 1

N

N∑

n=1
T (x(n))

︸ ︷︷ ︸
"sufficient statistics"

)
− A(θ) + const

▶ All we need to know about the data for estimation is the average value of T (x(n)) ,
i.e., the “sufficient statistics”
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Moment-Matching
At the maximum-likelihood parameters, ∂

∂θ L(θ) = 0

∂

∂θ
L(θ) = ∂

∂θ

(
θ⊤

( 1
N

N∑

n=1
T (x(n))

)
− A(θ)

)

= 1
N

N∑

n=1
T (x(n)) − Epθ

[T (X)] = 0

=⇒ at maximum-likelihood parameters, we have the moment-matching conditions:

Epθ
[T (X)] = 1

N

N∑

n=1
T (x(n)) =: Ê[T (X]

▶ “model expectation equals data expectation”
▶ sometimes we can easily solve for the maximum-likelihood parameters; other times
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Concavity of Log-Likelihood

L(θ) = θ⊤
( 1

N

N∑

n=1
T (x(n))

)

︸ ︷︷ ︸
linear in θ

− A(θ)
︸ ︷︷ ︸
convex

+const

The log-likelihood is concave

=⇒ every zero-gradient point is a global optimum

=⇒ the moment-matching conditions are necessary and sufficient for optimality
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Summary So Far

▶ pθ(x) = h(x) exp(θ⊤T (x) − A(θ))
▶ Bernoulli, normal, Poisson, MRF, . . .
▶ First property: ∂

∂θ A(θ) = Epθ
[T (X)]

▶ Second property: ∂2

∂θ ∂θ⊤ A(θ) = Varpθ
[T (X)]

▶ Likelihood: L(θ) = θ⊤T − A(θ) + const where T = 1
N

∑N
n=1 T (x(n)) are the

average sufficient statistics over the data
▶ L(θ) is concave
▶ Moment-matching conditions are necessary and sufficient for parameters θ to

maximize the likelihood: Epθ
[T (X)] = T = Ê[T (X)]
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Pairwise MRFs as an Exponential Family
Consider the chain model on x1, x2, x3, x4 ∈ {0, 1}:

p(x) = ϕ1,2(x1, x2)ϕ2,3(x2, x3)ϕ3,4(x3, x4)
Z
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Pairwise MRFs as an Exponential Family: Review

The log-density is

log p(x) = log ϕ1,2(x1, x2) + log ϕ2,3(x2, x3) + log ϕ3,4(x3, x4) − log Z

= log ϕ1,2(0, 0) · I[x1 = 0, x2 = 0] + log ϕ1,2(0, 1) · I[x1 = 0, x2 = 1]
+ log ϕ1,2(1, 0) · I[x1 = 1, x2 = 0] + log ϕ1,2(1, 1) · I[x1 = 1, x2 = 1]

+ log ϕ2,3(0, 0) · I[x2 = 0, x3 = 0] + . . .

+ log ϕ3,4(0, 0) · I[x3 = 0, x4 = 0] + . . .

− log Z
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This is an exponential family with

T (x) =
(
I[x1 = 0, x2 = 0], . . . , I[x1 = 1, x2 = 1],

I[x2 = 0, x3 = 0], . . . , I[x2 = 1, x3 = 1],

I[x3 = 0, x4 = 0], . . . , I[x3 = 1, x4 = 1]
)

T (x) =
(
I[xi = a, xj = b]

)
(i,j)∈E, a∈Val(Xi), b∈Val(Xj)

θ =
(
θab

ij

)
(i,j)∈E, a∈Val(Xi), b∈Val(Xj)

log pθ(x) = θ⊤x − A(θ) =
( ∑

(i,j)∈E

∑

a∈Val(Xi)

∑

b∈Val(Xj)
θab

ij · I[xi = a, xj = b]
)

− A(θ)

The final three lines are accurate for general pairwise MRFs.
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Moment-Matching for Pairwise-MRFs

If we apply the moment-matching conditions to pairwise MRFs, we recover our previous
result. At the maximum-likelihood parameters:

Epθ
[T (X)] = Ê[T (X)],

Epθ

[
I[Xi = a, Xj = b]

]
= Ê

[
I[Xi = a, Xj = b]

] ∀(i, j) ∈ E, a, b,

Pθ(Xi = a, Xj = b) = #(Xi = a, Xj = b)
N

∀(i, j) ∈ E, a, b,

(we still have to solve for θ numerically; recall that the RHS minus the LHS is the
gradient of L(θ))
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Moment-Matching for Gaussians
For a normal distribution, we had T (x) = (x2, x)

log pµ,σ2(x) = x2 · −1
2σ2 + x · µ

σ2 − µ2

2σ2 − log(
√

2πσ2)

We know Epθ
[X] = µ and Epθ

[X2] = µ2 + σ2.

Moment-matching says the max-likelihood parameters satisfy:

Epθ
[X] = Ê[X] =⇒ µ = Ê[X]

Epθ
[X2] = Ê[X2] =⇒ µ2 + σ2 = Ê[X2]

=⇒ σ2 = Ê[X2] − µ2

We can easily solve for the maximum-likelihood µ, σ2.
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