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Exponential Families Interpretation (h(z) = 1)
_ po(x) = exp(8 T(x) — A(9))
An exponential family defines a set of distributions with densities of the form
» 07T (x) is a real-valued “score” (positive or negative), defined in terms of
po(z) = h(z) exp(8TT(x) — A(6)) “features” T'(z) and parameters 6
> exp(fTT(z)) is an unnormalized probability
> 0: “(natural) parameters”
» T(z): “sufficient statistics” » The log-partition function A(6) = log Z(#) ensures normalization
> A(6): “log-partition function” T
0'T(x
> h(z): “base measure” (we'll usually ignore) po(x) = M, A(0) =log Z(0) = log/exp(GTT(x))d.vc
exp(A(9))
» Valid parameters are the ones for which the integral for A(f) is finite.
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Applications and Importance

» We can get many different families of distributions by selecting different “features”
T'(x) for a variable  in some sample space:

» Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, ...

» There is a general theory that covers learning and other properties of all of these
distributions!

» A good trick to seeing that a distribution belongs to an exponential family is to
match its log-density to

log pg(x) = log h(z) + 0T T(2) — A(6)
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Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models,
observe that the unnormalized probability factors over “simpler” functions, just like
graphical models:

exp(OTT(:L')) = expz 0:;T;(z) = Hexp(@iTi(x))

3

(Think: what could T'(z) look like to recover a graphical model?)
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Example: Bernoulli Distribution
The Bernoulli distribution with parameter ;1 € [0, 1] has density (pmf)
I r=
) =
p;t( ) {1 —pu 2=0
One way to write the log-density is
log pyu(z) = I[z = 1]log p + I[z = 0] log(1 — )
To match this to an exponential family
log po(z) = log h(z) + 0T T(x) — A(9),
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Review: Bernoulli Distribution

To match this to an exponential family log pg(x) = log h(z) + 0T T(x) — A(6), take

h(z)=1
T(z) = (Ilz = 1],I[z = 0])

vy

> 0 = (log p, log(1 — 1))
e =1
> oTT =
exp(07T(2)) {0 ",

v

A(0) = log(eft 4 %)
It's easy to check that A(f) = 0 when 6 = (log p, log(1 — p))

v
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Example: Bernoulli, Single Parameter

We can also write the Bernoulli as a single-parameter exponential family. Rewrite the
log-density as

log pu(x) =log(1 — p) + xlog 1 K

ning in Exponential Families
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Review: Bernoulli, Single Parameter Example: Normal Distribution

P (®) =~ exp (= 52 (w — )?)
22 /271_0_2 202
h(z)=1
Tx)=Iz=1 ==z
0 =log ﬁ
(7
r=1
> exp(fx) =
p(0 ) {1 0
> A(H) = log(1 +€?)
> It's easy to check that log(1 + e”) = —log(1 — 1) when 6 = log SE
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Review: Normal Distribution

-1
2o+ % L log(V2ro?)
o o
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logp, s2(z) = 552 T2 3

> h(z)=1

> T(z) = (2*, )

> 0= (2;0177 oﬁf)

> A() = log [exp(z?0; + 2fs)dz = ... = % + log(V2mo2)
Note: we need 6; < 0; why?

13/28 14 /28
I:r.oggrties of Exponential Families B il Propgr[ies of Exponential Families rential Families
Properties of Log-Partition Function First Derivative of A(f) = First Moment of T'(X)
7]
SA(0) = By, [T(X)]
Proof: (assume h(z) =1)
The log-partition function A(#) has two critical properties that relate its derivatives to 9 1 5
moments (expectations) of the sufficient statistics 7'(X). 9 T - - = s
( ) (X) 5 ogzx:exp(ﬁ (2)) S p (0T (a)) 30 Xz:exp(e (z))
0
=— Z exp(GTT(x))%GTT(z)
exp(01T(z))
-T(x
Z Z(e ()
= Zpo z
x
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Second Derivative of A(f) = Second Moment of T'(X)

82

WA(H) = Vary, [T'(X)]

Notation: %A(G) is the Hessian matrix of A(6). The (i, j)th entry is 50?;0] A(0).
Proof: algebra
Important consequence: A(f) is convex

» Variance is PSD = Hessian is PSD =— A convex
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Log-Likelihood

The average log-likelihood in an exponential family is

Z log py (™))
N~

ZN: (GTT ) A(0) + — Z log h(z
Tﬂ:ll - (n)
=0 (N;T(x ))—A(@)—i—const

"sufficient statistics"

» All we need to know about the data for estimation is the average value of T'(z("™) |,
i.e., the “sufficient statistics”
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Moment-Matching
At the maximum-likelihood parameters, %6(9) =0

9 N
() = ( (% 2 7) - A())
— Z T(z™)

Epy [T(X)] =0

= at maximum-likelihood parameters, we have the moment-matching conditions:

T = B

nl

Epy [T(X)]

> “model expectation equals data expectation”

» sometimes we can easily solve for the maximum-likelihood parameters; other times
numerical routines are needed
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Concavity of Log-Likelihood

1

L) = eT( i T(m(”))) — A(6) +const
n=1

=|

linear in 6 convex

The log-likelihood is concave
= every zero-gradient point is a global optimum

= the moment-matching conditions are necessary and sufficient for optimality
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Summary So Far

> po(w) = h(z) exp(8TT(x) — A(9))

» Bernoulli, normal, Poisson, MRF, ...

> First property: %A(G) =, [T(X)]

» Second property: %A(G) = Varp, [T(X)]

> Likelihood: £(6) = 0T — A(f) + const where T = + S"2_ T(2(™) are the
average sufficient statistics over the data

> L(0) is concave

» Moment-matching conditions are necessary and sufficient for parameters 6 to
maximize the likelihood: E,, [T'(X)] =T = E[T(X)]
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Pairwise MRFs as an Exponential Family

Consider the chain model on 1, z2, 23,24 € {0,1}:

_ D12(x1, 32)P2.3(w2, 23) P34 (23, T4)
Z

p(x)
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Pairwise MRFs as an Exponential Family: Review This is an exponential family with
T(x) = <]I[a:1 =0,29 =0),

I[zg = 0,23 =0], ..., Ifze=1,25=1],
log p(x) = log ¢1,2(x1, 2) + log ¢2 3(w2, x3) + log ¢3 4(w3,24) — log Z Tzz =0,24=0], ..., Izz=1la4= H)

The log-density is

=log ¢12(0,0) - Ifz1 = 0,22 = 0] +log ¢12(0, 1) - I[z1 = 0,22 = 1]
+log ¢12(1,0) - I[zg = 1,20 = 0] + log ¢12(1,1) - [[xg = 1,29 = 1]
+ log ¢2,3(0,0) - I[zo = 0,23 = 0] + ...
+ log ¢3.4(0,0) - I[z3 = 0,24 = 0] + . ..
—logZ

T(x) = (]I[xl =a,z; = b])

(4,4)€E, a€Val(X;), beVal(X;)
: _ (pab
. 0= (937' )(i,j)eE,aeVal(Xz),beVal(X])

log pg(x) = 0"x — A(0) = ( o> e dai=ax; = b}) — A(9)
(4,§)EE a€Val(X;) beVal(X;)

The final three lines are accurate for general pairwise MRFs.
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Moment-Matching for Pairwise-MRFs Moment-Matching for Gaussians
] o o ) For a normal distribution, we had T'(z) = (22, z)
If we apply the moment-matching conditions to pairwise MRFs, we recover our previous
result. At the maximum-likelihood parameters: -1 2
P logp, 2 (x) = 22 - vz B —ﬂ——log(\/Qﬂaz)
s 202 o2 9202
By [T(X)] = E[T(X)],
We know E,, [X] = p and E,,[X?] = p? + o2
Ep, [I[Xi = a, X; = b]] = E[I[X; = a, X; = b]] V(i,j) € E,a,b, Moment-matching says the max-likelihood parameters satisfy:
X, =a, X; = _ TR _ T
P =a, X, =)= PEZELZD i Gy e pa, Ep[X] =E[X] = n=B[X]
Ep X% =EX?Y = p?+0°=E[X?
(we still have to solve for 6 numerically; recall that the RHS minus the LHS is the — o? = R[X? — 42
gradient of £(0))
We can easily solve for the maximum-likelihood s, o2
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