

Exponential Families

An exponential family defines a set of distributions with densities of the form

$$
p_{\theta}(x)=h(x) \exp \left(\theta^{\top} T(x)-A(\theta)\right)
$$

- $\theta:$ "(natural) parameters"
- $T(x)$: "sufficient statistics"
- $A(\theta)$: "log-partition function"
- $h(x)$: "base measure" (we'll usually ignore)

Exponential Families

\section*{| Exponential Families |
| :---: |
| ooncococo |}

Interpretation $(h(x)=1)$

$$
p_{\theta}(x)=\exp \left(\theta^{\top} T(x)-A(\theta)\right)
$$

- $\theta^{\top} T(x)$ is a real-valued "score" (positive or negative), defined in terms of "features" $T(x)$ and parameters θ
- $\exp \left(\theta^{\top} T(x)\right)$ is an unnormalized probability
- The \log-partition function $A(\theta)=\log Z(\theta)$ ensures normalization

$$
p_{\theta}(x)=\frac{\exp \left(\theta^{\top} T(x)\right)}{\exp (A(\theta))}, \quad A(\theta)=\log Z(\theta)=\log \int \exp \left(\theta^{\top} T(x)\right) d x
$$

- Valid parameters are the ones for which the integral for $A(\theta)$ is finite.

Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models, observe that the unnormalized probability factors over "simpler" functions, just like graphical models:

$$
\exp \left(\theta^{\top} T(x)\right)=\exp \sum_{i} \theta_{i} T_{i}(x)=\prod_{i} \exp \left(\theta_{i} T_{i}(x)\right)
$$

(Think: what could $T(x)$ look like to recover a graphical model?)

Example: Bernoulli Distribution

The Bernoulli distribution with parameter $\mu \in[0,1]$ has density (pmf)

$$
p_{\mu}(x)= \begin{cases}\mu & x=1 \\ 1-\mu & x=0\end{cases}
$$

One way to write the log-density is

$$
\log p_{\mu}(x)=\mathbb{I}[x=1] \log \mu+\mathbb{I}[x=0] \log (1-\mu)
$$

To match this to an exponential family

$$
\log p_{\theta}(x)=\log h(x)+\theta^{\top} T(x)-A(\theta),
$$

Exponential Families	
Review: Bernoulli Distribution	
To mat - $h(x)$ - $T($ - $\theta=$ - \exp - $A($ - It's	$-A(\theta)$, take

Review: Bernoulli, Single Parameter

- $h(x)=1$
- $T(x)=\mathbb{I}[x=1]=x$
- $\theta=\log \frac{\mu}{1-\mu}$
- $\exp \left(\theta^{\top} x\right)= \begin{cases}e^{\theta} & x=1 \\ 1 & x=0\end{cases}$
- $A(\theta)=\log \left(1+e^{\theta}\right)$
- It's easy to check that $\log \left(1+e^{\theta}\right)=-\log (1-\mu)$ when $\theta=\log \frac{\mu}{1-\mu}$

Exponential Families Oococo 0.0000000

Properties of Exponential Families
OoOc
Learning in EExpnential Families
coococooco
Example: Bernoulli, Single Parameter
We can also write the Bernoulli as a single-parameter exponential family. Rewrite the log-density as

$$
\log p_{\mu}(x)=\log (1-\mu)+x \log \frac{\mu}{1-\mu}
$$

Properties of Exponential Families
oooc

Leaniing in Exponential Families
coococococo

Example: Normal Distribution

$$
p_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

Exponential Families
OOOOOOOOOOOO

— \quad Properies
Learning in Exponential Families
o.0000000000

Properties of Exponential Families

Properties of Log-Partition Function

The log-partition function $A(\theta)$ has two critical properties that relate its derivatives to moments (expectations) of the sufficient statistics $T(X)$.

Exponential Families 000000000000	Properties of Exponential Families Oob	Learning in Exponential Families Ooocoso
000000000000	-0*0	000000000000

First Derivative of $A(\theta) \equiv$ First Moment of $T(X)$

$$
\frac{\partial}{\partial \theta} A(\theta)=\mathbb{E}_{p_{\theta}}[T(X)]
$$

Proof: (assume $h(x) \equiv 1)$

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log \sum_{x} \exp \left(\theta^{\top} T(x)\right) & =\frac{1}{\sum_{x} \exp \left(\theta^{\top} T(x)\right)} \frac{\partial}{\partial \theta} \sum_{x} \exp \left(\theta^{\top} T(x)\right) \\
& =\frac{1}{Z(\theta)} \sum_{x} \exp \left(\theta^{\top} T(x)\right) \frac{\partial}{\partial \theta} \theta^{\top} T(x) \\
& =\sum_{x} \frac{\exp \left(\theta^{\top} T(x)\right)}{Z(\theta)} \cdot T(x) \\
& =\sum_{x} p_{\theta}(x) \cdot T(x) \\
& =\mathbb{E}_{n_{0}}[T(X)]
\end{aligned}
$$

Log-Likelihood

The average log-likelihood in an exponential family is

$$
\begin{aligned}
\mathcal{L}(\theta) & =\frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}\left(x^{(n)}\right) \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(\theta^{\top} T\left(x^{(n)}\right)\right)-A(\theta)+\frac{1}{N} \sum_{n=1}^{N} \log h\left(x^{(n)}\right) \\
& =\theta^{\top}(\underbrace{\frac{1}{N} \sum_{n=1}^{N} T\left(x^{(n)}\right)}_{\text {"sufficient statistics" }})-A(\theta)+\text { const }
\end{aligned}
$$

- All we need to know about the data for estimation is the average value of $T\left(x^{(n)}\right)$, i.e., the "sufficient statistics"

Learning in Exponential Families

Moment-Matching

At the maximum-likelihood parameters, $\frac{\partial}{\partial \theta} \mathcal{L}(\theta)=0$

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \mathcal{L}(\theta) & =\frac{\partial}{\partial \theta}\left(\theta^{\top}\left(\frac{1}{N} \sum_{n=1}^{N} T\left(x^{(n)}\right)\right)-A(\theta)\right) \\
& =\frac{1}{N} \sum_{n=1}^{N} T\left(x^{(n)}\right)-\mathbb{E}_{p_{\theta}}[T(X)]=0
\end{aligned}
$$

\Longrightarrow at maximum-likelihood parameters, we have the moment-matching conditions:

$$
\mathbb{E}_{p_{\theta}}[T(X)]=\frac{1}{N} \sum_{n=1}^{N} T\left(x^{(n)}\right)=: \hat{\mathbb{E}}[T(X]
$$

- "model expectation equals data expectation"
- sometimes we can easily solve for the maximum-likelihood parameters; other times numerical routines are needed

Eoonoctidian Fanilis

Properties of Exponential Families
pooco
Laosiningin Eyponenerid Familise
Pairwise MRFs as an Exponential Family: Review

The log-density is

$$
\begin{aligned}
\log p(\mathbf{x})= & \log \phi_{1,2}\left(x_{1}, x_{2}\right)+\log \phi_{2,3}\left(x_{2}, x_{3}\right)+\log \phi_{3,4}\left(x_{3}, x_{4}\right)-\log Z \\
= & \log \phi_{1,2}(0,0) \cdot \mathbb{I}\left[x_{1}=0, x_{2}=0\right]+\log \phi_{1,2}(0,1) \cdot \mathbb{I}\left[x_{1}=0, x_{2}=1\right] \\
& +\log \phi_{1,2}(1,0) \cdot \mathbb{I}\left[x_{1}=1, x_{2}=0\right]+\log \phi_{1,2}(1,1) \cdot \mathbb{I}\left[x_{1}=1, x_{2}=1\right] \\
& +\log \phi_{2,3}(0,0) \cdot \mathbb{I}\left[x_{2}=0, x_{3}=0\right]+\ldots \\
& +\log \phi_{3,4}(0,0) \cdot \mathbb{I}\left[x_{3}=0, x_{4}=0\right]+\ldots \\
& -\log Z
\end{aligned}
$$

Exponential Families 000000000000	Properties of Exponential Families 0000	Learning in Exponential Families 000000000

Moment-Matching for Pairwise-MRFs

If we apply the moment-matching conditions to pairwise MRFs, we recover our previous result. At the maximum-likelihood parameters:

$$
\mathbb{E}_{p_{\theta}}[T(X)]=\hat{\mathbb{E}}[T(X)]
$$

$$
\begin{aligned}
& \mathbb{E}_{p_{\theta}}\left[\mathbb{I}\left[X_{i}=a, X_{j}=b\right]\right]=\hat{\mathbb{E}}\left[\mathbb{I}\left[X_{i}=a, X_{j}=b\right]\right] \forall(i, j) \in E, a, b, \\
& P_{\theta}\left(X_{i}=a, X_{j}=b\right)=\frac{\#\left(X_{i}=a, X_{j}=b\right)}{N} \quad \forall(i, j) \in E, a, b,
\end{aligned}
$$

(we still have to solve for θ numerically; recall that the RHS minus the LHS is the gradient of $\mathcal{L}(\theta)$)

Eyoneatid Fanilis

$$
\begin{aligned}
& \text { Properties of Exponential Families } \\
& \text { ooco }
\end{aligned}
$$

This is an exponential family with

$$
\begin{array}{rll}
T(\mathbf{x})=\left(\mathbb{I}\left[x_{1}=0, x_{2}=0\right],\right. & \ldots, & \mathbb{I}\left[x_{1}=1, x_{2}=1\right] \\
\mathbb{I}\left[x_{2}=0, x_{3}=0\right], & \ldots, & \mathbb{I}\left[x_{2}=1, x_{3}=1\right] \\
\mathbb{I}\left[x_{3}=0, x_{4}=0\right], & \ldots, & \left.\mathbb{I}\left[x_{3}=1, x_{4}=1\right]\right)
\end{array}
$$

$$
\begin{aligned}
T(\mathbf{x}) & =\left(\mathbb{I}\left[x_{i}=a, x_{j}=b\right]\right)_{(i, j) \in E, a \in \operatorname{Val}} \\
\theta & =\left(\theta_{i j}^{a b}\right)_{(i, j) \in E, a \in \operatorname{Val}\left(X_{i}\right), b \in \operatorname{Val}\left(X_{j}\right)}
\end{aligned}
$$

$$
\log p_{\theta}(\mathbf{x})=\theta^{\top} \mathbf{x}-A(\theta)=\left(\sum_{(i, j) \in E} \sum_{a \in \operatorname{Val}\left(X_{i}\right)} \sum_{b \in \operatorname{Val}\left(X_{j}\right)} \theta_{i j}^{a b} \cdot \mathbb{I}\left[x_{i}=a, x_{j}=b\right]\right)-A(\theta)
$$

The final three lines are accurate for general pairwise MRFs.

Moment-Matching for Gaussians
For a normal distribution, we had $T(x)=\left(x^{2}, x\right)$

$$
\log p_{\mu, \sigma^{2}}(x)=x^{2} \cdot \frac{-1}{2 \sigma^{2}}+x \cdot \frac{\mu}{\sigma^{2}}-\frac{\mu^{2}}{2 \sigma^{2}}-\log \left(\sqrt{2 \pi \sigma^{2}}\right)
$$

We know $\mathbb{E}_{p_{\theta}}[X]=\mu$ and $\mathbb{E}_{p_{\theta}}\left[X^{2}\right]=\mu^{2}+\sigma^{2}$.
Moment-matching says the max-likelihood parameters satisfy:

$$
\begin{array}{rlr}
\mathbb{E}_{p_{\theta}}[X]=\hat{\mathbb{E}}[X] & \Longrightarrow & \mu=\hat{\mathbb{E}}[X] \\
\mathbb{E}_{p_{\theta}}\left[X^{2}\right]=\hat{\mathbb{E}}\left[X^{2}\right] & \Longrightarrow & \mu^{2}+\sigma^{2}=\hat{\mathbb{E}}\left[X^{2}\right] \\
& \Longrightarrow & \sigma^{2}=\hat{\mathbb{E}}\left[X^{2}\right]-\mu^{2}
\end{array}
$$

We can easily solve for the maximum-likelihood μ, σ^{2}.

