Exponential Families	Properties of Exponential Families 0000	Learning in Exponential Families	Exponential Families •0000000000	Properties of Exponential Families	Learning in Exponential Families		
СС	OMPSCI 688: Probabilistic Graphical I	Models					
	Lecture 12: Learning in Exponential Families	S					
				Exponential Families			
	Dan Sheldon						
	Manning College of Information and Computer Sciences University of Massachusetts Amherst	5					
Partially base	ed on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (d	domke@cs.umass.edu)					
		,					
		1/28			2 / 28		
Exponential Families	Properties of Exponential Families 0000	Learning in Exponential Families	Exponential Families	Properties of Exponential Families 0000	Learning in Exponential Families		
Exponential Fam	nilies		Interpretation (h(x) = 1)			
An exponential f	amily defines a set of distributions with densities	of the form	$p_{\theta}(x) = \exp(\theta^{+}T(x) - A(\theta))$				
An exponential ranny defines a set of distributions with definities of the form $(x) = h(x) = (a^{T} \pi(x) - h(a))$			• $\theta^{\top}T(x)$ is a real-valued "score" (positive or negative), defined in terms of "features" $T(x)$ and parameters θ				
	$p_{\theta}(x) = h(x) \exp(\theta \cdot T(x) - A(\theta))$			$\blacktriangleright \exp(\theta^{\top}T(x))$ is an unnormalized probability			
• θ : "(natural) parameters" • $T(x)$: "sufficient statistics"			▶ The log-partition function $A(\theta) = \log Z(\theta)$ ensures normalization				
 A(θ): "log-partition function" h(x): "base measure" (we'll usually ignore) 			$p_{\theta}(x) = \frac{\exp(\theta^{\top}T(x))}{\exp(A(\theta))}, A(\theta) = \log Z(\theta) = \log \int \exp(\theta^{\top}T(x))dx$				
			 Valid paramet 	ters are the ones for which the integral for A	A(heta) is finite.		
		3 / 28			4 / 28		

Exponential Families	Properties of Exponential Families	Learning in Exponential Families	Exponential Families	Properties of Exponential Families	Learning in Exponential Families
Applications and	Importance		Preview: Graphica	I Models	
 We can get many different families of distributions by selecting different "features" T(x) for a variable x in some sample space: Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, There is a general theory that covers learning and other properties of all of these distributions! A good trick to seeing that a distribution belongs to an exponential family is to match its log-density to log p_θ(x) = log h(x) + θ^TT(x) - A(θ) 			For some intuition why exponential families could be relevant for graphical models, observe that the unnormalized probability factors over "simpler" functions, just like graphical models: $\exp(\theta^{\top}T(x)) = \exp\sum_{i} \theta_{i}T_{i}(x) = \prod_{i} \exp(\theta_{i}T_{i}(x))$ (Think: what could $T(x)$ look like to recover a graphical model?)		
		5 / 28			6/28
Exponential Families	Properties of Exponential Families	Learning in Exponential Families	Exponential Families	Properties of Exponential Families 0000	Learning in Exponential Families
Example: Bernoul	lli Distribution				
The Bernoulli dist	ribution with parameter $\mu \in [0,1]$ has densi	ty (pmf)			
	$p_{\mu}(x) = \begin{cases} \mu & x = 1\\ 1 - \mu & x = 0 \end{cases}$				
One way to write	the log-density is				
	$\log p_{\mu}(x) = \mathbb{I}[x=1] \log \mu + \mathbb{I}[x=0] \log(1)$	$(\mu - \mu)$			
To match this to a	an exponential family				
	$\log p_{\theta}(x) = \log h(x) + \theta^{\top} T(x) - A(\theta)$),			
		7 / 28			8 / 28

Exponential Families	Properties of Exponential Families	Learning in Exponential Families	Exponential Families	Properties of Exponential Families	Learning in Exponential Families
Review: Bernoulli D	Distribution		Example: Berno	ulli, Single Parameter	
			We can also writ	te the Bernoulli as a single-parameter exponen	tial family. Rewrite the
To match this to an θ h(x) = 1 $T(x) = (\mathbb{I}[x = 1 + \theta] + (\log \mu, \log(1 + \theta)) + (\log \theta + \log(\theta)) + (\log \theta + \log(\theta)) + (\log \theta) + (\log \theta)$	exponential family $\log p_{\theta}(x) = \log h(x)$ $[], \mathbb{I}[x = 0])$ $\begin{cases} e^{\theta_1} & x = 1 \\ e^{\theta_2} & x = 0 \\ + e^{\theta_2}) \end{cases}$ k that $A(\theta) = 0$ when $\theta = (\log \mu, \log(1))$	$(+ \ heta^{ op} T(x) - A(heta), \ ext{take}$	log-density as	$\log p_{\mu}(x) = \log(1-\mu) + x \log \frac{\mu}{1-\mu}$	
		9 / 28			10/28
Exponential Families 0000000000000	Properties of Exponential Families	Learning in Exponential Families	Exponential Families	Properties of Exponential Families	Learning in Exponential Families
Review: Bernoulli, S	Single Parameter		Example: Norma	al Distribution	
$h(x) = 1$ $T(x) = \mathbb{I}[x = 1]$ $\theta = \log \frac{\mu}{1-\mu}$ $\exp(\theta^{\top}x) = \begin{cases} e^{\theta} \\ 1 \end{cases}$ $A(\theta) = \log(1 + \mu)$ $It's easy to check$	$= x$ $\frac{\theta}{x} = 1$ $x = 0$ e^{θ} $k \text{ that } \log(1 + e^{\theta}) = -\log(1 - \mu) \text{ when}$	n $\theta = \log \frac{\mu}{1-\mu}$		$p_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$	12/28

Exponential Families	Properties of Exponential Families	Learning in Exponential Families	Exponential Families	Properties of Exponential Families ©000	Learning in Exponential Families
Review: Normal	I Distribution				
	$p_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$				
	$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x^2 - 2x\mu + \mu^2)\right)$.))		Properties of Exponential Famili	es
	$\log p_{\mu,\sigma^{2}}(x) = x^{2} \cdot \frac{-1}{2\sigma^{2}} + x \cdot \frac{\mu}{\sigma^{2}} - \frac{\mu^{2}}{2\sigma^{2}} - \log(\sqrt{2})$	$(2\pi\sigma^2)$			
$ h(x) = 1 T(x) = (x^2 + \theta) = (\frac{-1}{2\sigma^2}, \frac{1}{\sigma}) $	(2, x) $(\frac{\mu}{r^2})$				
$\blacktriangleright A(\theta) = \log$	$\int \exp(x^2\theta_1 + x\theta_2)dx = \dots = \frac{\mu}{2\sigma^2} + \log(\sqrt{2\pi\sigma^2})$				
Note: we need ($ heta_1 < 0;$ why?	12 / 29			14/29
		13/20			14/20
exponential Families	Properties of Exponential Families	Learning in Exponential Families	exponential Families	Properties of Exponential Families	Learning in Exponential Families
Properties of Lo	og-Partition Function		First Derivative	e of $A(\theta) \equiv$ First Moment of $T(X)$	
				$\boxed{\frac{\partial}{\partial \theta} A(\theta) = \mathbb{E}_{p_{\theta}}[T(X)]}$	
			Proof: (assum	$he h(x) \equiv 1)$	
The log-partitio moments (expec	n function $A(\theta)$ has two critical properties that rectations) of the sufficient statistics $T(X)$.	late its derivatives to	$\frac{\partial}{\partial \theta}$	$\log \sum_{x} \exp(\theta^{\top} T(x)) = \frac{1}{\sum_{x} \exp(\theta^{\top} T(x))} \frac{\partial}{\partial \theta} \sum_{x}$	$\exp(\theta^{\top}T(x))$
				$= \frac{1}{Z(\theta)} \sum_{x} \exp(\theta^{\top} T(x)) \frac{\partial}{\partial t}$	$\frac{1}{2} \theta^{ op} T(x)$
				$= \sum_{x} \frac{\exp(\theta^{\top} T(x))}{Z(\theta)} \cdot T(x)$	
				$=\sum_{x} p_{\theta}(x) \cdot T(x)$	
		15 / 28		$=\mathbb{E}_{\mathbb{P}^{n}}[T(X)]$	16 / 28

Exponential Families Properties of Exponential Families	Learning in Exponential Families	Exponential Families 00000000000	Properties of Exponential Families 0000	Learning in Exponential Families
Concavity of Log-Likelihood	Summary So Far			
$\mathcal{L}(\theta) = \underbrace{\theta^{\top} \Big(\frac{1}{N} \sum_{n=1}^{N} T(x^{(n)})\Big)}_{\text{linear in } \theta} - \underbrace{A(\theta)}_{\text{convex}} + \text{constrained}$ The log-likelihood is concave $\implies \text{ every zero-gradient point is a global optimum}$ $\implies \text{ the moment-matching conditions are necessary and sufficient}$	Summary So Par • $p_{\theta}(x) = h(x) \exp(\theta^{\top}T(\mathbf{x}) - A(\theta))$ • Bernoulli, normal, Poisson, MRF, • First property: $\frac{\partial}{\partial \theta} A(\theta) = \mathbb{E}_{p_{\theta}}[T(X)]$ • Second property: $\frac{\partial^2}{\partial \theta \partial \theta^{\top}} A(\theta) = \operatorname{Var}_{p_{\theta}}[T(X)]$ • Likelihood: $\mathcal{L}(\theta) = \theta^{\top}\overline{T} - A(\theta) + \operatorname{const}$ where $\overline{T} = \frac{1}{N} \sum_{n=1}^{N} T(x^{(n)})$ are the average sufficient statistics over the data • $\mathcal{L}(\theta)$ is concave • Moment-matching conditions are necessary and sufficient for parameters θ to maximize the likelihood: $\mathbb{E}_{p_{\theta}}[T(X)] = \overline{T} = \hat{\mathbb{E}}[T(X)]$			
	21/28			22/28
Exponential Families Properties of Exponential Families	Learning in Exponential Families	Exponential Families 00000000000	Properties of Exponential Families	Learning in Exponential Families
Pairwise MRFs as an Exponential Family				
Consider the chain model on $x_1, x_2, x_3, x_4 \in \{0, 1\}$:				
$p(\mathbf{x}) = \frac{\phi_{1,2}(x_1, x_2)\phi_{2,3}(x_2, x_3)\phi_{3,4}(x_3, x_4)}{Z}$	23/28			24/28

Exponential Families	Properties of Exponential Families	Learning in Exponential Families	Exponential Families	Properties of Exponential Families	Learning in Exponential Families
Pairwise MR	RFs as an Exponential Family: Review		This is an exponentia	I family with	
			$T(\mathbf{x}) = \left(\mathbb{I}[x_1 = 0, x]\right)$	$x_2 = 0$],, $\mathbb{I}[x_1 = 1, x_2 = 1]$,	
The log-der	nsity is		$\mathbb{I}[x_2 = 0, x$	$x_3 = 0], \dots, \mathbb{I}[x_2 = 1, x_3 = 1],$	
$\log p(\mathbf{x})$	$= \log \phi_{1,2}(x_1, x_2) + \log \phi_{2,3}(x_2, x_3) + \log \phi_{3,4}(x_3, x_4)$	$) - \log Z$	$\mathbb{I}[x_3 = 0, x$	$\mathbb{I}_4 = 0], \dots, \mathbb{I}[x_3 = 1, x_4 = 1])$	
$= \log \phi_{1,2}(0,0) \cdot \mathbb{I}[x_1 = 0, x_2 = 0] + \log \phi_{1,2}(0,1) \cdot \mathbb{I}[x_1 = 0, x_2 = 1] + \log \phi_{1,2}(1,0) \cdot \mathbb{I}[x_1 = 1, x_2 = 0] + \log \phi_{1,2}(1,1) \cdot \mathbb{I}[x_1 = 1, x_2 = 1] + \log \phi_{2,3}(0,0) \cdot \mathbb{I}[x_2 = 0, x_3 = 0] + \dots + \log \phi_{3,4}(0,0) \cdot \mathbb{I}[x_3 = 0, x_4 = 0] + \dots$			$T(\mathbf{x}) = \Big(\mathbb{I}[x_i =$	$a, x_j = b]\Big)_{(i,j)\in E, a\in \operatorname{Val}(X_i), b\in \operatorname{Val}(X_j)}$	
			$\theta = (\theta_{ij}^{ab})_{(i,j)\in E, a\in \operatorname{Val}(X_i), b\in \operatorname{Val}(X_j)}$		
	$-\log Z$		$\log p_{\theta}(\mathbf{x}) = \theta^{\top} \mathbf{x} - \mathbf{x}$	$A(\theta) = \left(\sum_{(i,j)\in E} \sum_{a\in \operatorname{Val}(X_i)} \sum_{b\in \operatorname{Val}(X_j)} \theta_{ij}^{ab} \cdot \right)$	$[[x_i = a, x_j = b]] - A(\theta)$
		25 / 28	The final three lines a	are accurate for general pairwise MRFs.	26 / 28
Exponential Families	Properties of Exponential Families 0000	Learning in Exponential Families	Exponential Families 00000000000	Properties of Exponential Families	Learning in Exponential Families
Moment-Ma	tching for Pairwise-MRFs		Moment-Matching f	or Gaussians	
If we apply the moment-matching conditions to pairwise MREs, we recover our previous			For a normal distribut	tion, we had $T(x) = (x^2, x)$	
result. At the maximum-likelihood parameters:		$\log p$	$\mu_{\mu,\sigma^2}(x) = x^2 \cdot \frac{-1}{2\sigma^2} + x \cdot \frac{\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \log \frac{1}{2\sigma^2}$	$g(\sqrt{2\pi\sigma^2})$	
	$\mathbb{E}_{p_{\theta}}[T(X)] = \mathbb{E}[T(X)],$		We know $\mathbb{E}_{p_{ heta}}[X] = \mu$	μ and $\mathbb{E}_{p_{ heta}}[X^2] = \mu^2 + \sigma^2.$	
I	$\mathbb{E}_{p_{\theta}}\left[\mathbb{I}[X_i = a, X_j = b]\right] = \hat{\mathbb{E}}\left[\mathbb{I}[X_i = a, X_j = b]\right] \forall (i, j) \in \mathbb{N}$	$j) \in E, a, b,$	Moment-matching sa	ys the max-likelihood parameters satisfy	r:
	$P_{\theta}(X_i = a, X_j = b) = \frac{\#(X_i = a, X_j = b)}{N} \forall (i,$	$j) \in E, a, b,$	\mathbb{E}_p	$\mu_{p_{\theta}}[X] = \hat{\mathbb{E}}[X] \implies \mu = \hat{\mathbb{E}}[X]$ ${=} \mu^{2} = \hat{\mathbb{E}}[X^{2}] \implies \mu^{2} + \sigma^{2} = \hat{\mathbb{E}}[X]$	[] : ²]
(we still hav gradient of	we to solve for $ heta$ numerically; recall that the RHS min $\mathcal{L}(heta))$	us the LHS is the		$\implies \qquad \sigma^2 = \hat{\mathbb{E}}[X]$	$[2^{2}] - \mu^{2}$
			We can easily solve for	or the maximum-likelihood μ, σ^2 .	
		27 / 28			28 / 28