


Big Picture 0000	Continuous Distributions	Expectations	Exponential Families	Big Picture 000	Continuous Distributions	Expectations 0000000	Exponential Families
	COMPSCI 688: Probabi Lecture 11: Continuous Distribu Dan Sh	tions and Exponential Fam			Big Pi	cture	
	Manning College of Informat University of Massa Based on materials by Benjamin M. Marlin (marlin@cs.u	chusetts Amherst	ass.edu)				
			1 / 38				2 / 38
Big Picture 0000	Continuous Distributions 00000000000	Expectations 0000000	Exponential Families	Big Picture	Continuous Distributions 00000000000	Expectations 0000000	Exponential Families
 The Big Picture Summary of course so far compact representations of high-dimensional distributions Bayes nets, MRFs, CRFs conditional independence, graph structure, factorization inference conditioning, marginalization variable elimination, message passing Bayes nets: counting Bayes nets: counting MRFs/CRFs: numerical optimization of log-likelihood, inference is key subroutine 				ightarrow app	nce (and therefore learning) not tr proximate inference types of probability distributions	-)

Big Picture 0000	Continuous Distributions 000000000●	Expectations	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations ©00000	Exponential Families
Marginal an	nd Conditional Densities						
► Defini	itions from pmfs usually translate	to densities					
 Suppo 	ose $p(\mathbf{x},\mathbf{y})$ is a density for (\mathbf{X},\mathbf{Y})	. The marginal and conditi	ional densities are		Expec	tations	
	$p(\mathbf{y}) = \int p(\mathbf{y}) d\mathbf{y}$						
	$p(\mathbf{x} \mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})}$	$\frac{1}{\int p(\mathbf{x}, \mathbf{y})} = \frac{p(\mathbf{x}, \mathbf{y})}{\int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}}$					
			17 / 38				18/38
Big Picture 0000	Continuous Distributions	Expectations 000000	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations 000000	Exponential Families
Expectation	IS			Mean and V	'ariance		
value $\mathbb{E}[f(\mathbf{x})]$	$\mathbb{E}[f(\mathbf{X})] = \sum_{\mathbf{x}} p(\mathbf{x})$ $\mathbb{E}[f(\mathbf{X})] = \int p(\mathbf{x}) f$ integral is over all possible values	$f(\mathbf{x}) f(\mathbf{x})$ discrete $f(\mathbf{x}) d\mathbf{x}$ continuous of \mathbf{x} .	(X), the expected	scalars. The mean i	$\mathbb{E}[\mathbf{X}] = \int X$]. The <i>variance</i> is $\mathrm{Var}(X) = \mathbb{E}[(X-\mu)]$	$\int p(\mathbf{x}) \mathbf{x} d\mathbf{x}$ $p^2] X$ scalar	$f(x) = (x - c)^d$ for
We often w	write this as $\mathbb{E}_{p(\mathbf{x})}[f(\mathbf{X})]$ to make	the distribution clear.			$\operatorname{Var}(\mathbf{X}) = \mathbb{E}[(\mathbf{X} - \mu)]$	$ [\mathbf{X} - \mu)] X \text{ vector} $	
			19 / 38				20 / 38

Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families	
				Linearity of I	Expectation			
-	and conditional means use margina $\mathbb{E}_{p(\mathbf{x},\mathbf{y})}[\mathbf{Y}] = \mathbb{E}_{p(\mathbf{x},\mathbf{y})}[\mathbf{X} \mathbf{Y} = \mathbf{y}] = \mathbb{E}_{p(\mathbf{x},\mathbf{y})}[\mathbf{X} \mathbf{Y} = \mathbf{y}] = \mathbb{E}_{p(\mathbf{x},\mathbf{y})}[\mathbf{X} \mathbf{X} \mathbf{Y} = \mathbf{y}]$	$_{p(\mathbf{y})}[\mathbf{Y}]$ marginal $_{p(\mathbf{x} \mathbf{y})}[\mathbf{X}]$ conditional		For $X, a, b \in \mathbb{R}$: $\mathbb{E}[aX + b] = a \mathbb{E}[X] + b$ For vectors X and <i>b</i> and matrix <i>A</i> $\mathbb{E}[AX + b] = A \mathbb{E}[X] + b$ Proof: write out expectation, use linearity of sum/integral				
			21/38				22 / 38	
Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations 000000	Exponential Families	
Variance is	Positive (Semi-Definite)			Significance				
A covarian	nce matrix $\operatorname{Var}(\mathbf{X})$ is always positi	ve semi-definite.						
Proof (sc	alar): $\mathbb{E}[(X-\mu)^2] \ge 0$ because the	ne integrand is non-negative			ns are important! But, like many	y important things, they ca	n be hard to	
Proof (ve	ector): let ${f z}$ be any vector and $\mu=$	= $\mathbb{E}[\mathbf{X}]$. Then		compute:	suppose $p(\mathbf{x})$ is an MRF, then			
	L ($\begin{aligned} \mathbf{X} &- \mu)^{\top} (\mathbf{X} - \mu)] \mathbf{z} \\ \mathbf{X} &- \mu)^{\top} (\mathbf{X} - \mu) \mathbf{z}] \\ \mathbf{z} &- \mu) \mathbf{z})^{\top} (\mathbf{X} - \mu) \mathbf{z}] \end{aligned}$				$\mathbb{E}_{p(\mathbf{x})}\left[\mathbb{I}[X_u=a,X_v=b] ight]$ d in general		
		$[\mathbf{x} - \mu)\mathbf{z}]$ $(\mathbf{x} - \mu)\mathbf{z}]$ $[\mathbf{x} - \mu)\mathbf{z}\ ^2]$		We will com	ne back to approximating expec	tations and approximate in	ference	
			23 / 38				24 / 38	

Exponential Families Exponential Families $F(x) = h(x) \exp(\theta^T T(x) - A(\theta))$ $= \theta^T (natural) parameters? = T(x) : sufficient statistics? = A(\theta) : (log-parition (natural)) = h(x) : "base measure" (we'll usually ignore) = h(x) : (base measure) = h($	Big Picture 0000	Continuous Distributions	Expectations	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families
Exponential Families $p_{\theta}(x) = h(x) \exp(\theta^{\top}T(x) - A(\theta))$ $g(x) = h(x) \exp(\theta^{\top}T(x) - A(\theta))$ θ . "(natural) parameters." $T(x)$: "sufficient statistics." $A(\theta)$: "log-partition function" $h(x)$: "base measure" (we'll usually ignore) $p(x) = b(x) \exp(\theta^{\top}T(x) - A(\theta))$ $p_{\theta}(x) = \exp(\theta^{\top}T(x))$ is a real-valued "score" (positive or negative), defined in terms of "eatures." $T(x)$ for a variable x in some sample space. $p_{\theta}(x) = \exp(\theta^{\top}T(x))$ is an unnormalized probability h The log-partition $A(\theta) = \log Z(\theta)$ function ensures normalization $p_{\theta}(x) = \frac{\exp(\theta^{\top}T(x))}{\exp(A(\theta))}$. $A(\theta) = \log Z(\theta) = \log \int \exp(\theta^{\top}T(x)) dx$ $p_{\theta}(x) = \frac{\exp(\theta^{\top}T(x))}{\exp(A(\theta)}$. $A(\theta)$ is finite. $p_{\theta}(x) = \log f(x) + \theta^{\top}T(x) - A(\theta)$ $p_{\theta}(x) = \log f(x) + \theta^{\top}T(x) - A(\theta)$ $p_{\theta}(x) = \log f(x) + \theta^{\top}T(x) - A(\theta)$					Exponential	Families		
Big PressExecutivesExecutive and the production of the production o		Exponentia	al Families		$p_{\theta}(x) = h(x) \exp(\theta^{\top} T(x) - A(\theta))$ $\bullet \ \theta: \text{ "(natural) parameters"}$ $\bullet \ T(x): \text{ "sufficient statistics"}$ $\bullet \ A(\theta): \text{ "log-partition function"}$			
Interpretation $(h(x) = 1)$ $p_{\theta}(x) = \exp(\theta^{\top}T(x) - A(\theta))$ $\theta^{\top}T(x)$ is a real-valued "score" (positive or negative), defined in terms of "features" $T(x)$ and parameters θ $\exp(\theta^{\top}T(x))$ is a nunormalized probability $\exp(\theta^{\top}T(x))$ is a nunormalized probability $p_{\theta}(x) = \frac{\exp(\theta^{\top}T(x))}{\exp(A(\theta))}, A(\theta) = \log Z(\theta) = \log \int \exp(\theta^{\top}T(x))dx$ $P_{\theta}(x) = \frac{\exp(\theta^{\top}T(x))}{\exp(A(\theta))}, A(\theta) = \log Z(\theta) = \log \int \exp(\theta^{\top}T(x))dx$ $\exp(\theta^{\top}T(x)) = \log h(x) + \theta^{\top}T(x) - A(\theta)$				25 / 38				26 / 38
$p_{\theta}(x) = \exp(\theta^{\top}T(x) - A(\theta))$ • $\theta^{\top}T(x)$ is a real-valued "score" (positive or negative), defined in terms of "features" $T(x)$ and parameters θ • $\exp(\theta^{\top}T(x))$ is an unnormalized probability • The log-partition $A(\theta) = \log Z(\theta)$ function ensures normalization $p_{\theta}(x) = \frac{\exp(\theta^{\top}T(x))}{\exp(A(\theta))}, A(\theta) = \log Z(\theta) = \log \int \exp(\theta^{\top}T(x))dx$ • Valid parameters are the ones for which $A(\theta)$ is finite.	Big Picture 0000	Continuous Distributions	Expectations	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations	Exponential Families
$F_{\theta}(x) = \exp(\theta^{\top}T(x))$ $\theta^{\top}T(x) \text{ is a real-valued "score" (positive or negative), defined in terms of "features" T(x) and parameters \theta \exp(\theta^{\top}T(x)) \text{ is an unnormalized probability} \exp(\theta^{\top}T(x)) \text{ is an unnormalized probability} F_{\theta}(x) = \exp(\theta^{\top}T(x)), A(\theta) = \log Z(\theta) \text{ function ensures normalization} p_{\theta}(x) = \frac{\exp(\theta^{\top}T(x))}{\exp(A(\theta))}, A(\theta) = \log Z(\theta) = \log \int \exp(\theta^{\top}T(x)) dx \log p_{\theta}(x) = \log h(x) + \theta^{\top}T(x) - A(\theta) \log p_{\theta}(x) = \log h(x) + \theta^{\top}T(x) - A(\theta)$	Interpretatio	on $(h(x) = 1)$			Applications	s and Importance		
77 / 38	"feature $\exp(\theta)$ The loce	(x) is a real-valued "score" (positive res" $T(x)$ and parameters θ ($^{T}T(x)$) is an unnormalized probability og-partition $A(\theta) = \log Z(\theta)$ function $p_{\theta}(x) = \frac{\exp(\theta^{T}T(x))}{\exp(A(\theta))}, A(\theta) = \frac{\exp(\theta^{T}T(x))}{\exp(A(\theta))}$	we or negative), defined in bility tion ensures normalization $= \log Z(\theta) = \log \int \exp(\theta)$		T(x) + B There distrib A goo	for a variable x in some sample s Bernoulli, Binomial, Multinomial, Bet is a general theory that covers le butions! d trick to seeing that a distributi n its log-density to	pace: a, Gaussian, Poisson, MRFs, earning and other propertie on belongs to an exponent	 es of all of these
			· /	27 / 38				28 / 38

Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families
Preview: Gra	aphical Models			Example: B	ernoulli Distribution		
				The Berno	ulli distribution with parameter μ	$i\in [0,1]$ has density (pmf)	
	tuition why exponential families t the unnormalized probability fa				$p_{\mu}(x) = \begin{cases} \mu \\ 1 \end{cases}$	$\begin{aligned} x &= 1 \\ -\mu x &= 0 \end{aligned}$	
graphicar inc		$T_{i}(x) = \prod_{i \in \mathcal{D}} \exp(\theta_{i} T_{i}(x))$		One way to	o write the log-density is		
	$\exp(\theta^{\top}T(x)) = \exp\sum_{i} \theta$	$\prod_{i=1}^{i} \exp(b_i 1_i(x))$			$\log p_{\mu}(x) = \mathbb{I}[x=1]\log$	$\mu + \mathbb{I}[x=0]\log(1-\mu)$	
(Think: wha	at could $T(x)$ look like to recover	er a graphical model?)		To match t	this to an exponential family		
					$\log p_{\theta}(x) = \log h(x)$	$(\theta) + \theta^{\top} T(x) - A(\theta),$	
			29 / 38				30 / 38
Big Picture 0000	Continuous Distributions	Expectations	Exponential Families	Big Picture 0000	Continuous Distributions 0000000000	Expectations 0000000	Exponential Families
				Review: Ber	rnoulli Distribution		
				$ h(x) = $ $ T(x) = $ $ \theta = (1 $ $ exp(\theta) $ $ A(\theta) = $	this to an exponential family $\log p$ = 1 = $(\mathbb{I}[x = 1], \mathbb{I}[x = 0])$ $\log \mu, \log(1 - \mu))$ $^{\top}T(x)) = \begin{cases} e^{\theta_1} & x = 1\\ e^{\theta_2} & x = 0 \end{cases}$ = $\log(e^{\theta_1} + e^{\theta_2})$ say to check that $A(\theta) = 0$ when)-A(heta), take
			31 / 38				32 / 38

Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations	Exponential Families
Example: Be	rnoulli, Single Parameter			Review: Ber	noulli, Single Parameter		
We can also log-density a	, write the Bernoulli as a single-p as $\log p_\mu(x) = \log(1 - (\log(1 - \log(1 - \log(1 - (\log(1 - (\log(1 - \log(1 - (\log(1 - \log(1 - (\log(1))))))))))))$		ly. Rewrite the	$\bullet \ \theta = \log \theta$ $\bullet \ \exp(\theta)$ $\bullet \ A(\theta) = $	$=\mathbb{I}[x=1]=x$	$\log(1-\mu)$ when $ heta=\lograc{\mu}{1-\mu}$	
			33 / 38				34 / 38
Big Picture 0000	Continuous Distributions	Expectations	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations	Exponential Families
Example: No	ormal Distribution			Review: Nor	rmal Distribution		
	$p_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{\sqrt{2\pi\sigma^2}}) \exp(-\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{\sqrt{2\pi\sigma^2}}) \exp($	$p\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$			$p_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{1}{2\sigma^2} + x\right)\right)\right)\right)$	$-\frac{1}{2\sigma^2}(x^2 - 2x\mu + \mu^2))$	
					= 1	0 20	

Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families	Big Picture 0000	Continuous Distributions	Expectations 0000000	Exponential Families			
Pairwise Markov	v Random Field			Next Time						
Will revisit later	·			 derive 	cal models are exponential familie important properties of exponent I treatment of maximum likelihoo	ial families	families			
			37 / 38				38 / 38			