Dan Sheldon

Manning College of Information and Computer Sciences University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

2 / 38

Big Picture

Continuous Distributions

Expectations 0000000 Exponential Families

1 / 38

Big Picture oo●o

Continuous Distributions

Continuous Distributions

Expectations

Exponential Families

Exponential Families

The Big Picture

Summary of course so far

- ▶ compact **representations** of high-dimensional distributions
 - ► Bayes nets, MRFs, CRFs
 - ▶ conditional independence, graph structure, factorization
- inference
 - conditioning, marginalization
 - ▶ variable elimination, message passing
- learning
 - ► Bayes nets: counting
 - ▶ MRFs/CRFs: numerical optimization of log-likelihood, inference is key subroutine

What's left?

Big Picture

- ▶ Other types of probability distributions (continuous, parametric, . . .)

"statistical problems"

Big Picture

3/38

Big Picture 000●

Continuous Distributions

Exponential Families

Continuous Distributions

Expectation 0000000

Exponential Families

Today

- ▶ A bit of probability: continuous distributions, expectations
- Exponential families: very general class of distributions
 - ▶ includes MRFs
 - ▶ "redo" learning in much more general way

5 / 38

Continuous Distributions

Continuous Distributions

Expectations

Exponential Families

Big Picture Continuous Distributions

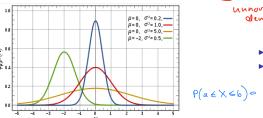
 $P(X=\emptyset)=0$

P(-E = X= +)=

Example: Normal Distribution

The univariate normal (or Gaussian) distribution is the most well known continuous log-density distribution. It has density

 $p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$



▶ $\mu \in \mathbb{R}$: location, mean, mode

▶ $\sigma^2 \ge 0$: spread, scale,

variance

Big Picture

Continuous Random Variables and Density Functions

How to define the distribution of a random variable $X \in \mathbb{R}^d$?

The random variable $X \in \Omega$ has **density function** $p: \Omega \to \mathbb{R}^+$ if

$$P(X \in A) = \int_{A} p(x)dx$$

Implies $p(x) \ge 0$, $\int_{\Omega} p(x) = 1$. $| = \rho(x \in \Omega) = \int_{\Omega} \rho(x) dx$

Note: a pmf is a density function (integral over finite set \equiv sum)

Continuous Distributions

Expectation:

Exponential Families

How to Think About a Density

A density is "like" a probability. For $X \in \mathbb{R}$ with density p(x)

$$P(X \in [x, x + \epsilon]) = \int_{x}^{x+\epsilon} p(x)dx \approx \epsilon p(x)$$

$$p(x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} P(X \in [x, x + \epsilon])$$

The density can be though of as the probability of X landing in a tiny interval around x (divided the width of the interval).

The standard rules of probability (conditioning, marginalization) usually translate to densities in a straightforward way. $\rho(\checkmark,\gamma) = \rho(\checkmark)\rho(\gamma|\checkmark)$

9/38

Big Picture

Continuous Distributions

Expectations

...

Example: Multivariate Normal Distribution

A multivariate normal (or Gaussian) random variable $\mathbf{X} \in \mathbb{R}^n$ has density

$$p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$
mean mode

- $\mu \in \mathbb{R}^n$: mean, mode
- $\Sigma \in \mathbb{R}^{n \times n}$: covariance matrix, defines scale and orientation
 - Must be positive definite (PSD): $\mathbf{x}^{\top} \Sigma \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$. (Equivalently, all eigenvalues positive).

10 / 38

occoccoccoccoccocc

Exponential Families

Big Picture

Continuous Distributions

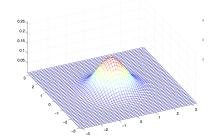
Expectations

Exponential Families

Visualization

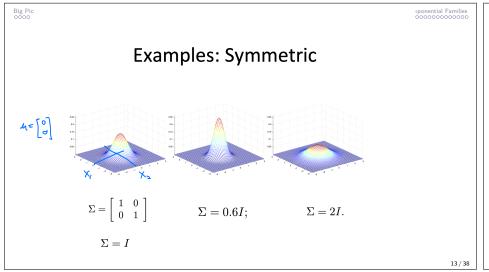
Sequence of examples due to Andrew Ng / Stanford

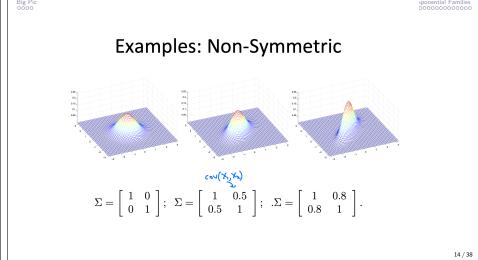
Multivariate Gaussian



$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right).$$

12 / 38





Contours $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \ \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \ .\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}.$

• Change mu: move mean of density around $\mu = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]; \ \mu = \left[\begin{array}{c} -0.5 \\ 0 \end{array} \right]; \ \mu = \left[\begin{array}{c} -1 \\ -1.5 \end{array} \right].$

occoccoccoccoccocc

Exponential Families

Marginal and Conditional Densities

- Definitions from pmfs usually translate to densities
- Suppose $p(\mathbf{x}, \mathbf{y})$ is a density for (\mathbf{X}, \mathbf{Y}) . The marginal and conditional densities are

$$p(\mathbf{y}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}$$
$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})} = \frac{p(\mathbf{x}, \mathbf{y})}{\int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}}$$

17 / 38

Expectations

18 / 38

Big Picture

Continuous Distributions

Expectations 0000000

Big Picture

Continuous Distributions

Expectations

Exponential Families

Expectations

Given a random variable X with pmf or density p(x) and a function f(X), the expected value $\mathbb{E}[f(\mathbf{X})]$ is

$$\mathbb{E}[f(\mathbf{X})] = \sum_{\mathbf{x}} p(\mathbf{x}) f(\mathbf{x})$$
 discrete

$$\mathbb{E}[f(\mathbf{X})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$
 continuous

The sum/integral is over all possible values of x.

We often write this as $\mathbb{E}_{p(\mathbf{x})}[f(\mathbf{X})]$ to make the distribution clear.

Mean and Variance

The moments of a distribution are expectations of polynomials, e.g. $f(x) = (x-c)^d$ for scalars.

The mean is

$$\mathcal{M} \subseteq \mathbb{E}[\mathbf{X}] = \int p(\mathbf{x}) \mathbf{x} \, d\mathbf{x}$$

 $\mathcal{M} = \mathbb{E}[\mathbf{X}] = \int p(\mathbf{x})\mathbf{x} \, d\mathbf{x}$ $= \mathbb{E}[\mathbf{Z}_i \mathbf{Z}_j]$ $= \mathbb{E}[(\mathbf{X}_i - \mathbf{M}_i)(\mathbf{X}_j - \mathbf{M}_j)]$ $\operatorname{Var}(X) = \mathbb{E}[(X - \mu)^2]$ X scalar

Let $\mu = \mathbb{E}[X]$. The variance is

$$Var(X) = \mathbb{E}[(X - \mu)^2]$$
 X sca

$$\operatorname{Var}(\mathbf{X}) = \mathbb{E}[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^{\top}] \quad X \text{ vector}$$

Continuous Distributions

In the vector case, $Var(\mathbf{X})$ is the *covariance matrix*.

Expectations

marginal

Exponential Families

Continuous Distribu

Expectation:

Exponential Families

Linearity of Expectation

For $X, a, b \in \mathbb{R}$:

$$\mathbb{E}[aX + b] = a\,\mathbb{E}[X] + b$$

For vectors \mathbf{X} and b and matrix A

$$\mathbb{E}[A\mathbf{X} + b] = A\,\mathbb{E}[\mathbf{X}] + b$$

Proof: write out expectation, use linearity of sum/integral

21 / 38

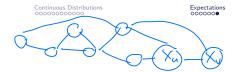
Big Picture

Continuous Distributions

Expectations 0000000 Exponential Families

Significance

Big Picture



Variance is Positive (Semi-Definite)

ÌΣ

A covariance matrix $Var(\mathbf{X})$ is always positive semi-definite.

Proof (scalar): $\mathbb{E}[(X - \mu)^2] \ge 0$ because the integrand is non-negative

Marginal and conditional means use marginal and conditional densities:

 $\mathbb{E}_{p(\mathbf{x},\mathbf{v})}[\mathbf{Y}] = \mathbb{E}_{p(\mathbf{y})}[\mathbf{Y}]$

 $\mathbb{E}_{n(\mathbf{x},\mathbf{v})}[\mathbf{X}|\mathbf{Y}=\mathbf{y}] = \mathbb{E}_{p(\mathbf{x}|\mathbf{y})}[\mathbf{X}] \quad \text{conditional}$

Proof (vector): let \mathbf{z} be any vector and $\mu = \mathbb{E}[\mathbf{X}]$. Then

$$z^{T} V_{\alpha r}(X) z = z^{T} \mathbb{E}[(X-\omega)(X-\omega)^{T}] z$$

$$= \mathbb{E}[z^{T}(X-\omega)(X-\omega)^{T}z] \qquad v=(X-\omega)^{T}z$$

$$= \mathbb{E}[V^{T}v]$$

$$= \mathbb{E}[\|v\|^{2}]$$

$$\geq 0$$

Expectations are important, but can be hard to compute!

Example: suppose $p(\mathbf{x})$ is an MRF. A marginal is an expectation:

$$P(X_u=a,X_v=b)=\mathbb{E}_{p(\mathbf{x})}\left[\mathbb{I}[X_u=a,X_v=b]\right]=\sum_{\mathbf{x}}\mathsf{p(x)}\cdot\mathsf{T[\mathbf{x}_u=d_j,\mathbf{x}_j=b]}$$

Inference = computing expectations = hard in general

We will come back to approximating expectations and approximate inference

24 / 38

22 / 38

Exponential Families

Big Picture Continuous Distributions Expectations coooco coooco Exponential Families coooco cooco coooco cooco coooco cooco cooco cooco cooco cooco cooco cooco cooco coo

Exponential Families

Exponential Families

An exponential family defines a set of distributions with densities of the form

$$p_{\theta}(x) = h(x) \exp(\theta^{\top} T(x) - A(\theta))$$

 $\triangleright \theta$: "(natural) parameters"

► T(x): "sufficient statistics"

 \blacktriangleright $A(\theta)$: "log-partition function"

 $\blacktriangleright h(x)$: "base measure" (we'll usually ignore)

26 / 38

Big Picture

Continuous Distributions

Expectations

Exponential Families

ilies

Big Picture

25 / 38

Continuous Distributions

Expectations

Exponential Families

Interpretation (h(x) = 1)

$$p_{\theta}(x) = \exp(\theta^{\top} T(x) - A(\theta))$$

- $m heta^{ op}T(x)$ is a real-valued "score" (positive or negative), defined in terms of "features" T(x) and parameters heta
- $ightharpoonup \exp(\theta^{\top}T(x))$ is an unnormalized probability
- ▶ The log-partition $A(\theta) = \log Z(\theta)$ function ensures normalization

$$p_{\theta}(x) = \frac{\exp(\theta^{\top} T(x))}{\exp(A(\theta))}, \quad A(\theta) = \log Z(\theta) = \log \int \exp(\theta^{\top} T(x)) dx$$

 \blacktriangleright Valid parameters are the ones for which $A(\theta)$ is finite.

Applications and Importance

- We can get *many* different families of distributions by selecting different "features" T(x) for a variable x in some sample space:
 - ▶ Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, . . .
- ► There is a general theory that covers learning and other properties of all of these distributions!
- ► A good trick to seeing that a distribution belongs to an exponential family is to match its log-density to

$$\log p_{\theta}(x) = \log h(x) + \theta^{\top} T(x) - A(\theta)$$

28 / 38

Continuous Distributions

Expectations

Exponential Families

ire

ontinuous Distribution

Continuous Distributions

Expectations

Exponential Families

Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models, observe that the unnormalized probability factors over "simpler" functions, just like graphical models:

$$\exp(\theta^{\top}T(x)) = \exp\sum_{i} \theta_{i}T_{i}(x) = \prod_{i} \exp(\theta_{i}T_{i}(x))$$

(Think: what could T(x) look like to recover a graphical model?)

Example: Bernoulli Distribution

The Bernoulli distribution with parameter $\mu \in [0,1]$ has density (pmf)

$$p_{\mu}(x) = \begin{cases} \mu & x = 1\\ 1 - \mu & x = 0 \end{cases}$$

One way to write the log-density is

$$\log p_{\mu}(x) = \mathbb{I}[x = 1] \log \mu + \mathbb{I}[x = 0] \log(1 - \mu)$$

To match this to an exponential family

$$\log p_{\theta}(x) = \log h(x) + \theta^{\top} T(x) - A(\theta),$$

Big Picture

Expectations

Exponential Families

30 / 38

29 / 38

Review: Bernoulli Distribution

To match this to an exponential family $\log p_{\theta}(x) = \log h(x) + \theta^{\top} T(x) - A(\theta)$, take

- h(x) = 1
- $T(x) = (\mathbb{I}[x=1], \mathbb{I}[x=0])$
- $\bullet \ \theta = (\log \mu, \log(1 \mu))$
- $A(\theta) = \log(e^{\theta_1} + e^{\theta_2})$
- ▶ It's easy to check that $A(\theta) = 0$ when $\theta = (\log \mu, \log(1 \mu))$

Big Picture

Continuous Distributions

Expectations 0000000 Exponential Families

31 / 38

Exponential Families

Expectations

Exponential Families

Example: Bernoulli, Single Parameter

We can also write the Bernoulli as a single-parameter exponential family. Rewrite the log-density as

$$\log p_{\mu}(x) = \log(1 - \mu) + x \log \frac{\mu}{1 - \mu}$$

Review: Bernoulli, Single Parameter

- h(x) = 1
- $T(x) = \mathbb{I}[x = 1] = x$ $\theta = \log \frac{\mu}{1-\mu}$

- $A(\theta) = \log(1+e^{\theta})$ It's easy to check that $\log(1+e^{\theta}) = -\log(1-\mu)$ when $\theta = \log\frac{\mu}{1-\mu}$

33 / 38

Big Picture

Continuous Distributions

Expectations

Exponential Families

Continuous Distributions

Expectations

Exponential Families

34 / 38

Example: Normal Distribution

$$p_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Review: Normal Distribution

$$p_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x^2 - 2x\mu + \mu^2)\right)$$

$$\log p_{\mu,\sigma^2}(x) = x^2 \cdot \frac{-1}{2\sigma^2} + x \cdot \frac{\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \log(\sqrt{2\pi\sigma^2})$$

- h(x) = 1
- $T(x) = (x^2, x)$ $\theta = (\frac{-1}{2\sigma^2}, \frac{\mu}{\sigma^2})$
- $A(\theta) = \log \int \exp(x^2 \theta_1 + x \theta_2) dx = \dots = \frac{\mu^2}{2\sigma^2} + \log(\sqrt{2\pi\sigma^2})$

Note: we need $\theta_1 < 0$; why?