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Big Picture
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The Big Picture

Summary of course so far

» compact representations of high-dimensional distributions
> Bayes netg—l\?RFs, CRFs
> conditional independence, graph structure, factorization
» inference
> conditioning, marginalization
> variable elimination, message passing
> learning
> Bayes nets: counting
> MRFs/CRFs: numerical optimization of log-likelihood, inference is key subroutine
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Big Picture
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What's left?

> Inference (and therefore learning) not tractable for many models

— approximate inference <W‘C,""CH .
Vou la oo

» Other types of probability distributions (continuous, parametric, ..

il
\> TotatisNee ) Prcjﬂlc e
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Today

» A bit of probability: continuous distributions, expectations

» Exponential families: very general class of distributions

> includes MRFs
> “redo” learning in much more general way
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Continuous Random Variables and Density Functions

How to define the distribution of a random variable X € R%?

The random variable X € Q has density function p: Q — RY if
P(X € A) = / p(a)de
Implies p(z) > 0, [, p(z) \ = P(XEQ) § P(*)A%

Note: a pmf is a density function (integral over finite set = sum)

Exponential Families
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Big Picture Continuous Distributions
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Example: Normal Distribution P(X ¢> Q 2,

The univariate normal (or Gaussian) distribution is the most well known continuous
distribution. It has density N fog- d“""”\f
z

p(ejie®) = %% exp (- 2%2(93 — p)?

nwnhygvrve I'EE()

Adene 1Ty

> %ER location, mean, mode
> [g2> 0: spread, scale,

Varlance l\
P(o\‘Xéb)c P(“)o!\ﬁ j
l

amilies
00000

PleeXze)= fpaozﬂ;
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Continuous Distributions
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How to Think About a Density

)

A density is “like” a probability. For X € R with density p(z) x ¢ Kte

P(X € [z,2+ ) :/Z

x

+e€
p(x)d ~ ep(x)

1
p(z) = lim —P(X € [z,z +¢])
The density can be though of as the probability of X landing in a tiny interval around x
(divided the width of the interval).

The standard rules of probability (conditioning, marginalization) usually translate to
densities in a straightforward way. f(‘ﬁ \0 - P(’(\P(VI’Q
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Example: Multivariate Normal Distribution

A multivariate normal (or Gaussian) random variable X € R" has density
V\C'j 1\4:.&!‘0\."1(

ST
(X X) = % exp (— %(x —pw)"E N (x = )
~— N )

V\N\o\/wl’:zcé\
>(pe R™ mean, mode prek
> Y € R™™: covariance matrix, defines scale and orientation
> Must be positive definite (PSD): x " $x > 0 for all x € R™. (Equivalently, all
eigenvalues positive).
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Visualization

Sequence of examples due to Andrew Ng / Stanford
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Multivariate Gaussian

p(z;p,2) = W exp (—%(w R A H)) -
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Examples: Symmetric Examples: Non-Symmetric
1«‘—‘["
==[; 5 =061, =2l
=1
13/38 14 /38
Contours Mean
contonts X% * Change mu: move mean of density around

Y. .
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Continuous Distributions
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Marginal and Conditional Densities

» Definitions from pmfs usually translgte to densities

> Suppose p(x,y) is a density for (ﬁ) The marginal and conditional densities are

p(y) = / p(x,y)dx

_pxy)  pxy)
Pixly) = ply)  [p(xy)dx
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Expectations

Given a random variable X with pmf or density p(x) and a function f(X), the expected
value E[f(X)] is

E[f(X)] = ZP(X)f(X) discrete

E[f(X)] = /p(x)f(x)dx continuous

The sum/integral is over all possible values of x.

We often write this as [, [f(X)] to make the distribution clear.
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Expectations
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Mean and Variance

= %
The moments of a distribution are expectations of polynomials, e.g. f(z) = (x — ¢)? for
scalars.

The mean is i,.c E[zc“zjfl
t) Pt
= L( x;@(x] —M;)}

Var(X) = E[(X — n)’] X scalar;—: (O\’ (le X))
Var(X) = E[(X — pu)(X — )] X vector

=T

2 =

M = EX] = /p(x)xdx
Let u = E[X]. The variance is

1B

=
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Expectations
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Marginal and conditional means use marginal and conditional densities:

Epxy)[Y] = Epy [Y] marginal
Epx3) XY = y] = Ep(xjy)[X] conditional

In the vector case, Var(X) is the covariance matrix.
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Expectations
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Linearity of Expectation

For X,a,b € R:
ElaX +b] = aE[X] +b

For vectors X and b and matrix A

E[AX +b] = AE[X] +b

Proof: write out expectation, use linearity of sum/integral
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Expectations
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Variance is Positive (Semi-Definite)

2

A covariance matrix Var(X) is always positive semi-definite.
Proof (scalar): E[(X — u)2] > 0 because the integrand is non-negative

Proof (vector): let z be any vector and = E[X]. Then
2 Vac(X)z= 2" h‘:[(YW)(X—Mﬂ z
= [ (xwfleil |
FE_L vV
Elr]
@)

y= (X w>T2

0

7z

Exponential Famil

23/38

Expectations

Exponential Families
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Expectations are important, but can be hard to compute!
Example: suppose p(x) is an MRF. A marginal is an expectation:

P(Xy = a, X, = b) = By [I[X, = a, X, = 8] = 29@' Tlx,=q, 6]
Inference = computing expectations = hard in general

We will come back to approximating expectations and approximate inference
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Big Picture Continuous Distributions Exponential Families
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Exponential Families

An exponential family defines a set of distributions with densities of the form

po() = ha) exp(67T(x) — A(9))

0: “(natural) parameters”

T(zx): “sufficient statistics”

A(0): “log-partition function”

h(z): “base measure” (we'll usually ignore)

vvyVvyy
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Interpretation (h(x) = 1)

po(x) = exp(OTT(:I:) — A(9))

v

0T T(x) is a real-valued “score” (positive or negative), defined in terms of
“features” T'(z) and parameters 6

v

exp(AT T (x)) is an unnormalized probability

> The log-partition A(f) = log Z(0) function ensures normalization
exp(0T(x)) / T
=2 A(f) =log Z(0) = I 0T d
poe) = Sy AO) =102 2(0) = log [ exp(6T(w))ds

v

Valid parameters are the ones for which A(0) is finite.
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Applications and Importance

» We can get many different families of distributions by selecting different “features”
T'(x) for a variable x in some sample space:

» Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, ...

» There is a general theory that covers learning and other properties of all of these
distributions!

» A good trick to seeing that a distribution belongs to an exponential family is to
match its log-density to

log pg(x) = log h(z) + 0 T(z) — A(9)
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Preview: Graphical Models Example: Bernoulli Distribution
The Bernoulli distribution with parameter 1 € [0, 1] has density (pmf)
For some intuition why exponential families could be relevant for graphical models, I r=1
. " jcvans for graphical mode pule) =
observe that the unnormalized probability factors over “simpler” functions, just like l—p =0
graphical models:
. One way to write the log-density is
exp(0 ' T(z)) = epo@iTi(;ﬂ) = Hexp(GiTi(:L'))
i i log pu(z) = I[z = 1]log p + I[z = 0] log(1 — p)
(Think: what could T'(z) look like to recover a graphical model?) To match this to an exponential family
log po() = log h(x) + 67 T(x) — A(9),
29/38 30/38
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Review: Bernoulli Distribution
To match this to an exponential family log py(x) = log h(x) + 6T T(z) — A(0), take

> h(z)=1

> T(x) = (I[z = 1],I[z = 0])

> 0 = (log i, log(1 — 1))

01 _
e r=1
> exp(0TT(x)) =
PO T(@)) {692 ",
> A(0) = log(e?t + )
> It's easy to check that A(f) = 0 when 6 = (log p1,log(1 — 1))
31/38 32/38
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Big Picture butions Expectations

Example: Bernoulli, Single Parameter

We can also write the Bernoulli as a single-parameter exponential family. Rewrite the
log-density as

bgMAz):lmﬂlfu)+xbg1“
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Review: Bernoulli, Single Parameter

h(z)=1
Tx)=Iz=1=x
0 =log t£;
1
> exp(fz) = { ’ 0

v

A(9) = log(1 + €%)

v

It's easy to check that log(1 + ¢%) = —log(1 — ) when 8 = log I{LTL

Exponential Families
00000000080000
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Exponential Families
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Review: Normal Distribution

1
py,,o'2 ({E) - W €Xp
1
T Voroz P
5 —1
log p,, 52 (z) =2°- 252 +
h(z) =1
T(x) = (2*, )
0= (58, %)
> A(6) = log [ exp(2?0; + x62)dx = ..

Note: we need 0 < 0; why?

(— ooz (@ — p)?)

(— ghe(a® — 2ap + 12))

R G Y- wee
x ﬁ*ﬁ* Og( 7T0')
= % + log(V2mo?)

Exponential Families
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Pairwise Markov Random Field Next Time
» graphical models are exponential families
Will revisit later. .. > derive important properties of exponential families
> general treatment of maximum likelihood learning in exponential families
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