

Learning in MRFs What is a Conditional Random Field?	Message-Passing Implementation	Learning in MRFs 00000000000	What is a Conditional Random Field? 0000000	Message-Passing Implementation
Log-Likelihood of Single Datum		The derivative wit	th respect to a generic parameter $ heta_{uv}^{ab}$ is	
Let's start by reformulating the log-likelihood of a single datum x. N $p_\theta({\bf x})=\frac{1}{Z(\theta)}\exp(-E_\theta({\bf x}))$	Vrite	We'll treat each t	$\frac{\partial}{\partial \theta_{uv}^{ab}} \log p_{\theta}(\mathbf{x}) = \frac{\partial}{\partial \theta_{uv}^{ab}} \left(-E_{\theta}(\mathbf{x}) \right) - \frac{\partial}{\partial \theta_{uv}^{ab}} \log$ erm separately.	Z(heta)
where $-E_{\theta}(\mathbf{x})$ is the <i>negative energy</i> :				
$-E_{\theta}(\mathbf{x}) = \log \prod_{(i,j)\in E} \phi_{ij}(x_i, x_j; \theta) = \sum_{(i,j)\in E} \theta_{ij}^{x_i x_j}$				
The log-likelihood of datum ${f x}$ is:				
$\log p_{\theta}(\mathbf{x}) = -E_{\theta}(\mathbf{x}) - \log Z(\theta)$				
	5 / 25			6 / 25
Learning in MRFs What is a Conditional Random Field?	Message-Passing Implementation	Learning in MRFs 000000000000	What is a Conditional Random Field? 000000	Message-Passing Implementation
Negative Energy Derivative		Log-Partition Fur	nction Derivative	
Recall the negative energy definition: $-E_{\theta}(\mathbf{x}) = \sum_{(i,j)\in E} \theta_{ij}^{x_i x_j}.$ Its derivative is easy, because it is linear in the parameters $\frac{\partial}{\partial \theta_{uv}^{ab}} \left(-E_{\theta}(\mathbf{x})\right) = \frac{\partial}{\partial \theta_{uv}^{ab}} \sum_{(i,j)\in E} \theta_{ij}^{x_i x_j} = \mathbb{I}[x_u = a, x_v = b]$	= b]	The derivative of $\frac{\hat{c}}{\partial \theta}$	the log-partition function has a special form. $ \frac{\partial}{ab}_{av} \log Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta_{uv}^{ab}} Z(\theta) $ $ = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta_{uv}^{ab}} \sum_{\mathbf{x}'} \exp(-E_{\theta}(\mathbf{x}')) $ $ = \frac{1}{Z(\theta)} \sum_{\mathbf{x}'} \frac{\partial}{\partial \theta_{uv}^{ab}} \exp(-E_{\theta}(\mathbf{x}')) $ $ = \frac{1}{Z(\theta)} \sum_{\mathbf{x}'} \exp(-E_{\theta}(\mathbf{x}')) \cdot \frac{\partial}{\partial \theta_{uv}^{ab}}(\theta_{uv}) $	$-E_{ heta}(\mathbf{x}'))$
	7 / 25			8/25

Learning in MRFs 00000000000000	What is a Conditional Random Field?	Message-Passing Implementation	Learning in MRFs 00000000000000	What is a Conditional Random Field?	Message-Passing Implementation
	$\begin{split} &= \sum_{\mathbf{x}'} \frac{\exp(-E_{\theta}(\mathbf{x}'))}{Z(\theta)} \cdot \mathbb{I}[x'_u = a, x'_v = \\ &= \sum_{\mathbf{x}'} p_{\theta}(\mathbf{x}') \cdot \mathbb{I}[x'_u = a, x'_v = b] \end{split}$	<i>b</i>]	Put Together		
	$= P_{\theta}(X_u = a, X_v = b)$		Put together, the de	rivative of the log-likelihood of a single	datum is
The derivative of the log-partition function is exactly a marginal probability! There is a very general underlying principle, which we will see more about when we study exponential families.			$rac{\partial}{\partial heta_{uv}^{ab}}$:	$\log p_{\theta}(\mathbf{x}) = \mathbb{I}[x_u = a, x_v = b] - P_{\theta}(X_u = b)$	$=a, X_v = b)$
Learning in MRFs 00000000000000	What is a Conditional Random Field?	9/25 Message-Passing Implementation 0000	Learning in MRFs 0000000000000	What is a Conditional Random Field? 0000000	10/25 Message-Passing Implementation 0000
Log-Likelihood of N	V Data Points		Computing the Der	ivatives	
With N data points, $\frac{\partial}{\partial \theta^{ab}_{uv}} \mathcal{L}(\theta)$ The derivative is dat	the derivative of the log-likelihood is $= \frac{\partial}{\partial \theta_{uv}^{ab}} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(\mathbf{x}^{(n)})$ $= \left(\frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[x_{u}^{(n)} = a, x_{v}^{(n)} = b]\right) - P_{\theta}(X_{u})$ $= \frac{\#(X_{u} = a, X_{v} = b)}{N} - P_{\theta}(X_{u} = a, X_{v})$ is marginal minus a model marginal.	$\begin{aligned} T_u &= a, X_v = b) \\ &= b) \end{aligned}$	$\frac{\partial}{\partial \theta^{ab}_{uv}}$ How do we compute The data marginal is Learning uses inferen	$\mathcal{L}(\theta) = \frac{\#(X_u = a, X_v = b)}{N} - P_{\theta}(X_u = b)$ the derivative? is easy. We do inference in P_{θ} to compute the as (the key) subroutine.	$a, X_v = b)$ e the model marginal.

Learning in MRFs 000000000000	What is a Conditional Random Field?	Message-Passing Implementation	Learning in MRFs 00000000000	What is a Conditional Random Field?	Message-Passing Implementation	
Moment-Matching			Learning via Optimization			
Each partial derivative must be zero at a maximum. This gives the <i>moment-matching</i> condition, which asserts the data marginal should match the model marginal: $\frac{\#(X_u = a, X_v = b)}{N} = P_{\theta}(X_u = a, X_v = b)$ This is similar to counting in Bayes net learning, but the marginal $P_{\theta}(X_u = a, X_v = b)$ depends on all parameters , not just the "local parameters" θ_{uv} , because of the global normalization constant $Z(\theta)$. The moment matching conditions for all parameters form a system of equations. It has a "unique" solution (the distribution is unique, not the parameters), but it's not easy to solve directly.		Instead, we can numerically maximize the log-likelihod, for example by gradient ascent: • Initialize θ (e.g. $\theta \leftarrow 0$) • Repeat • $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}(\theta)$ We saw above how to compute the entries of the gradient $\nabla_{\theta} L(\theta)$. The key subroutine is inference in the MRF.				
Learning in MPEs	What is a Conditional Pandom Field?	13/25	Learning in MREs	What is a Conditional Pandam Field?	14/25	
000000000000000000000000000000000000000		0000	000000000000000000000000000000000000000		0000	
What is a Conditional Random Field?			What is a conditional Kandom Field? Before we describe a CRF informally as an MRF where the x variables are always observed. $\begin{array}{c} \overbrace{Y_1} - \overbrace{Y_2} - \overbrace{Y_3} - \overbrace{Y_4} \\ \hline{x_1} & \overbrace{x_2} & \overbrace{x_3} & \overbrace{x_4} \end{array}$ Here's a better definition. A CRF defines an MRF over y for every fixed value of x: $p(\mathbf{y} \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}, \mathbf{y}_c), \qquad Z(\mathbf{x}) = \sum_{\mathbf{y}} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}, \mathbf{y}_c)$			
		15 / 25			16 / 25	

Learning in MRFs 000000000000	What is a Conditional Random Field? 00€0000	Message-Passing Implementation	Learning in MRFs 000000000000	What is a Conditional Random Field?	Message-Passing Implementation
Notes:			Learning in CRI	-s	
 Notes. No distribution over x Normalized separately for each x Each potential φ_c can depend arbitrarily on x (often designed with "local" connections to selected entries of x, but not necessary) Cliques c are subsets of the y indices 		Learning in CRFs In CRFs, we maximize the <i>conditional log-likelihood</i> : $\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(\mathbf{y}^{(n)} \mathbf{x}^{(n)})$ Some aspects are similar to learning in MRFs. A key difference is that the "model marginals" are different for each data case, because the normalization constant $Z(\mathbf{x}^{(n)})$			
			is different.		
			(see HW2, HW3	3)	
		17 / 25			18 / 25
Learning in MRFs 00000000000	What is a Conditional Random Field? 0000000	Message-Passing Implementation	Learning in MRFs	What is a Conditional Random Field? 00000€0	Message-Passing Implementation
Discussion			Example: Logis	tic Regression	
Why CRFs?	ter not to learn a model for $w(x)$ if it is not	pooled a guif you only	Logistic regressi	ion is a simple CRF with $y \in \{0, 1\}$. $\log p_{\theta}(y \mathbf{x}) = \frac{1}{\sigma(x)} \exp(\theta^{\top} \mathbf{x} \cdot \mathbb{I}[y = 0])$	1])
want to predict $p(\mathbf{y} \mathbf{x})$. This is especially true if we have lots of data.		$Z(\mathbf{x})$			
But it may be better to use an MRF and learn a full model p(x, y) for the joint distribution, especially if the model is "correct" and with smaller data sets. (Intuition: the x data can belo you learn the correct model faster.)			$Z(\mathbf{x}) = \exp(\boldsymbol{\theta}^{\top} \mathbf{x}) + 1$		
		,		$p_{\theta}(y=1 \mathbf{x}) = \frac{\exp(\theta^{\top}\mathbf{x})}{1+\exp\theta^{\top}\mathbf{x}}$	
		19 / 25			20 / 25

Learning in MRFs 000000000000	What is a Conditional Random Field? 000000€	Message-Passing Implementation	Learning in MRFs 0000000000000	What is a Conditional Random Field?	Message-Passing Implementation •000	
Example: Chain	CRF					
	a chain structured CPE is as a sequence of	logistic regression models				
with pairwise cor	inclines between adjacent y variables to enco	ourage a particular	Message Passing Implementation			
sequential struct	ure in predicted labels:		Wessage rassing implementation			
$(Y_1)-(Y_2)-$	$(Y_3) - (Y_4)$					
(X_1) (X_2)	(X_3) (X_4)					
		21 / 25			22 / 25	
Learning in MRFs 000000000000	What is a Conditional Random Field?	Message-Passing Implementation 0€00	Learning in MRFs 000000000000	What is a Conditional Random Field? 0000000	Message-Passing Implementation	
Overflow/Underf	flow and Log-Sum-Exp		► Step 2: m	arginalization requires exponentiation ("log-sum-exp	o")	
When factor values are small or large, or with many factors, messages can			$\alpha(x) = \log\left(\sum \exp\lambda(x, y)\right)$			
underflow or to manipula	r overflow since they are products of many ter te all factors and messages in log space.	ms. A common solution is		$\alpha(w) = \log\left(\sum_{y} \exp(\alpha(w, y))\right)$		
► Example: c	consider the common factor manipulation					
	$A(x) = \sum_{y} B(x, y)C(y)$					
Let's compu	ute $\alpha(x) = \log A(x)$ from $\beta(x, y) = \log B(x, y)$	(u) and $\gamma(u) = \log C(u)$				
► Step 1 : mu	Itiplication of factors is addition of log-factor	S				
	$\lambda(x, y) := \log(B(x, y)C(y)) - \beta(x, y)$	$\pm \gamma(u)$				
	$A(x,y) := \log(D(x,y)C(y)) = \beta(x,y)$	$\pm \gamma(y)$				
		23 / 25			24 / 25	

Learning in MRFs

What is a Conditional Random Field?

Message-Passing Implementation

Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow

 $logsumexp(a_1, \ldots, a_k)$:

- $\triangleright c \leftarrow \max_i a_i$
- Freturn $c + \log \sum_i \exp(a_i c)$

See scipy.special.logsumexp

(Comment: log-space implementation probably not needed in HW2, probably needed in HW3.)

25 / 25