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Learning in MRFs
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Learning in Pairwise MRFs

Let’s consider the problem of learning in a pairwise MRF with only edge potentials:

pθ(x) = 1
Z(θ)

∏

(i,j)∈E

ϕij(xi, xj ; θ), Z(θ) =
∑

x

∏

(i,j)∈E

ϕij(xi, xj ; θ)

Parameterized as
ϕij(a, b; θ) = exp(θab

ij )
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Learning in Pairwise MRFs

The learning problem is: given a data set x(1), . . . , x(N), find θ to maximize

L(θ) = 1
N

N∑

n=1
log pθ(x(n))

To solve this, we need to compute derivatives of L(θ).
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Log-Likelihood of Single Datum
Let’s start by reformulating the log-likelihood of a single datum x. Write

pθ(x) = 1
Z(θ) exp(−Eθ(x))

where −Eθ(x) is the negative energy:

−Eθ(x) = log
∏

(i,j)∈E

ϕij(xi, xj ; θ) =
∑

(i,j)∈E

θ
xixj

ij

The log-likelihood of datum x is:

log pθ(x) = −Eθ(x)− log Z(θ)
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The derivative with respect to a generic parameter θab
uv is

∂

∂θab
uv

log pθ(x) = ∂

∂θab
uv

(−Eθ(x))− ∂

∂θab
uv

log Z(θ)

We’ll treat each term separately.
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Negative Energy Derivative

Recall the negative energy definition:

−Eθ(x) =
∑

(i,j)∈E

θ
xixj

ij .

Its derivative is easy, because it is linear in the parameters

∂

∂θab
uv

(−Eθ(x)) = ∂

∂θab
uv

∑

(i,j)∈E

θ
xixj

ij = I[xu = a, xv = b]
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Log-Partition Function Derivative

The derivative of the log-partition function has a special form.

∂

∂θab
uv

log Z(θ) = 1
Z(θ)

∂

∂θab
uv

Z(θ)

= 1
Z(θ)

∂

∂θab
uv

∑

x′
exp(−Eθ(x′))

= 1
Z(θ)

∑

x′

∂

∂θab
uv

exp(−Eθ(x′))

= 1
Z(θ)

∑

x′
exp(−Eθ(x′)) · ∂

∂θab
uv

(−Eθ(x′))
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=
∑

x′

exp(−Eθ(x′))
Z(θ) · I[x′

u = a, x′
v = b]

=
∑

x′
pθ(x′) · I[x′

u = a, x′
v = b]

= Pθ(Xu = a, Xv = b)

The derivative of the log-partition function is exactly a marginal probability!

There is a very general underlying principle, which we will see more about when we
study exponential families.
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Put Together

Put together, the derivative of the log-likelihood of a single datum is

∂

∂θab
uv

log pθ(x) = I[xu = a, xv = b]− Pθ(Xu = a, Xv = b)
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Log-Likelihood of N Data Points

With N data points, the derivative of the log-likelihood is

∂

∂θab
uv

L(θ) = ∂

∂θab
uv

1
N

N∑

n=1
log pθ(x(n))

=
(

1
N

N∑

n=1
I[x(n)

u = a, x(n)
v = b]

)
− Pθ(Xu = a, Xv = b)

= #(Xu = a, Xv = b)
N

− Pθ(Xu = a, Xv = b)

The derivative is data marginal minus a model marginal.

11 / 25

Learning in MRFs What is a Conditional Random Field? Message-Passing Implementation

Computing the Derivatives

∂

∂θab
uv

L(θ) = #(Xu = a, Xv = b)
N

− Pθ(Xu = a, Xv = b)

How do we compute the derivative?

The data marginal is easy. We do inference in Pθ to compute the model marginal.
Learning uses inference as (the key) subroutine.
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Moment-Matching

Each partial derivative must be zero at a maximum. This gives the moment-matching
condition, which asserts the data marginal should match the model marginal:

#(Xu = a, Xv = b)
N

= Pθ(Xu = a, Xv = b)

This is similar to counting in Bayes net learning, but the marginal Pθ(Xu = a, Xv = b)
depends on all parameters, not just the “local parameters” θ·

uv, because of the global
normalization constant Z(θ).

The moment matching conditions for all parameters form a system of equations. It has a
“unique” solution (the distribution is unique, not the parameters), but it’s not easy to
solve directly.
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Learning via Optimization

Instead, we can numerically maximize the log-likelihod, for example by gradient ascent:
▶ Initialize θ (e.g. θ ← 0)
▶ Repeat

▶ θ ← θ + α∇θL(θ)

We saw above how to compute the entries of the gradient ∇θL(θ).

The key subroutine is inference in the MRF.
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What is a Conditional Random Field?
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What is a Conditional Random Field?

Before we describe a CRF informally as an MRF where the x variables are always
observed.

Here’s a better definition. A CRF defines an MRF over y for every fixed value of x:

p(y|x) = 1
Z(x)

∏

c∈C
ϕc(x, yc), Z(x) =

∑

y

∏

c∈C
ϕc(x, yc)

16 / 25



Learning in MRFs What is a Conditional Random Field? Message-Passing Implementation

Notes:
▶ No distribution over x
▶ Normalized separately for each x
▶ Each potential ϕc can depend arbitrarily on x (often designed with “local”

connections to selected entries of x, but not necessary)
▶ Cliques c are subsets of the y indices
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Learning in CRFs

In CRFs, we maximize the conditional log-likelihood:

max
θ

1
N

N∑

n=1
log pθ(y(n)|x(n))

Some aspects are similar to learning in MRFs. A key difference is that the “model
marginals” are different for each data case, because the normalization constant Z(x(n))
is different.

(see HW2, HW3)
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Discussion

Why CRFs?
▶ It’s often better not to learn a model for p(x) if it is not needed, e.g., if you only

want to predict p(y|x). This is especially true if we have lots of data.
▶ But it may be better to use an MRF and learn a full model p(x, y) for the joint

distribution, especially if the model is “correct” and with smaller data sets.
(Intuition: the x data can help you learn the correct model faster.)
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Example: Logistic Regression

Logistic regression is a simple CRF with y ∈ {0, 1}.

log pθ(y|x) = 1
Z(x) exp(θ⊤x · I[y = 1])

Z(x) = exp(θ⊤x) + 1

pθ(y = 1|x) = exp(θ⊤x)
1 + exp θ⊤x
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Example: Chain CRF

One way to view a chain-structured CRF is as a sequence of logistic regression models,
with pairwise connctions between adjacent y variables to encourage a particular
sequential structure in predicted labels:
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Message-Passing Implementation
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Overflow/Underflow and Log-Sum-Exp
▶ When factor values are small or large, or with many factors, messages can

underflow or overflow since they are products of many terms. A common solution is
to manipulate all factors and messages in log space.

▶ Example: consider the common factor manipulation

A(x) =
∑

y

B(x, y)C(y)

Let’s compute α(x) = log A(x) from β(x, y) = log B(x, y) and γ(y) = log C(y)
▶ Step 1: multiplication of factors is addition of log-factors

λ(x, y) := log(B(x, y)C(y)) = β(x, y) + γ(y)
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▶ Step 2: marginalization requires exponentiation (“log-sum-exp”)

α(x) = log
(∑

y

exp λ(x, y)
)
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Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow

logsumexp(a1, . . . , ak):
▶ c← maxi ai

▶ return c + log∑i exp(ai − c)

See scipy.special.logsumexp

(Comment: log-space implementation probably not needed in HW2, probably needed in
HW3.)
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