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COMPSCI 688: Probabilistic Graphical Models
Lecture 10: Learning in MRFs

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke®@cs.umass.edu)

1/25

Learning in MRFs What is a Conditional Random Field? Message-Passing Implementation
@000000000000 0000000 [e]e]e]e)

Learning in MRFs

2/25

Learning in MRFs What is a Conditional Random Field?
0®00000000000 0000000

Learning in Pairwise MRFs d77, 4713 >19§\
& GO —

Message-Passing Implementation

D
.

Let's consider the problem of learning in a pairwise MRF with only edge potentials:
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Parameterized as
. & ¢ij(a, b;0) = exp(@?jb
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The learning problem is: given a data set x(l)7 ey

Learning in Pairwise MRFs

x(N), find 6 to maximize

1N
L(9) = N Z logpg(x(”))
n=1

To solve this, we need to compute derivatives of £(0). 9>
————

4/25




Learning in MRFs What is a Conditional Random Field?
0008000000000 0000000
’ﬂ“ e 9>
2(9) o (x%)

Let’s start by reformulating the log-likelihood of a smgle atum x. Write

——=
exp(—Fp(x))

= loypii®) = 25 1)
A
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Log-Likelihood of Single Datum

emetf77 = - fc} pre}b po(x) = %

where —Ejy(x) is the negative energy: AT

—Ey(x) = log H Gij(zs,25;0) = Z 9;””]
(i.§)EE (ij)EE
The log-likelihood of datum x is:
log pg(x) = —Ep(x) — log Z(0)
(Cneav non livear
‘a 9

5/25

Learning in MRFs What is a Conditional Random Field?

Message-Passing Implementation
0000800000000 0000000 [e]e]e]e)

— orwa V20
z= (em, bn?j

Pow T 'hf/‘g |
fewne fae

The derivative with respect to a generic parameter % is
0 0 0
aeab log pg(x) = gab (—Fy(x)) — 59:11; log Z(0)

We'll treat each term separately.
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Negative Energy Derivative
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Recall the negative energy definition:

—Ep(x)= Y 05",

(i,jJ)EE

Its derivative is easy, because it is linear in the parameters

uv (4,5)€E

oz (~Eolx) =
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Z(9)= Z exp(-Ef)

The derivative of the log-partition function has a special form.
S eqb 1032[ 6= 3 (9) wab 2(e)
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Log-Partition Function Derivative
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Put Together

Put together, the derivative of the log-likelihood of a single datum is

d
7b10gp9(x) =[xy = a,ry = b] — Pp(Xy = a, X, = b)
003
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Log-Likelihood of NV Data Points

With N data points, the derivative of the log-likelihood is

N y 0
0 e 0 18 T
(e)=89—%ﬁgmgm(x ) = ) — Po(um 5, KD

N
= (}V >l =a,a) = b]) — Py(X, = a, X, =1)

n=1

:W—Pﬂ)@:a’){v:b)

The derivative is data marginal minus a model marginal.

eeld= Tl g logph= =D p (=)
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Computing the Derivatives

i[’(o) _ #(Xu =

aeab —Pg(Xu:a,Xv:b) = O

How do we compute the derivative?
. .J}('r‘;{—- tevwm (G(A,V\-"l'r‘s , éa57 ) ,'(,(/29\!'9 f‘o\de\?)\ dokto\

— 66(0’6 fervn ((‘/W‘;mk [N Vb\c\\fj(’nql ‘n MRF w/ quqmé é
Caference! meﬂsajef?nssfnﬁ/\fc‘w;lole el inatizn

N key subreutine
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Each partial derivative must be zero at a maximum. This gives the moment-matching
condition, which asserts the data marginal should match the model marginal:

“Shue" o0 B ¥ (ud)eE

¥ a &Val (Ya)
¢ b & Val(%)
This is similar to counting in Bayes net learning, but the marginal Py(Xy =a, X, =0)
depends on all parameters, not just the “local parameters” ¢;,,, because of the global
normalization constant Z(6).

#(Xu=0a, X, =)

5 =P(Xy=a,X,=0)

The moment matching conditions for all parameters form a system of equations. It has a
“unique” solution (the distribution is unique, not the parameters), but it's not easy to
solve directly.
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Learning via Optimization

Instead, we can numerically maximize the log-likelihod, for example by gradient ascent:

> Initialize 6 (e.g. 6 < 0)
> Repeat

octor cnb all pm‘r'mls

We saw above how to compute the entries of the gradient VyL(9).

The key subroutine is inference in the MRF.
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What is a Conditional Random Field?

il (Y,Y; x)

Before we describe a CRF informally as an MRF where the x variables are always

observed.
= O
P( y! ><>

)
Here's a better definition. A CRF defines an MRF over y for every fixed value of x:

OJOXORO
H Pe(x,¥e), Z(x) = Z H Be(X,¥e)

cec Yy ceC

p(ylx) = Z

Ey(mvk le. -
C(:qt.,\ model P(‘{ %\ Z(}rrr-c[’_((\‘i\\[g ‘ jz[\@z,m(\/:, Y(H)
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Notes:

» No distribution over x

» Normalized separately for each x

» Each potential ¢, can depend arbitrarily on x (often designed with “local”
connections to selected entries of x, but not necessary)

» Cliques c are subsets of the y indices
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In CRFs, we maximize the conditional log-likelihood:

1 N
1 () |5 ()
max Y " log po(y'™[x™)

n=1

Some aspects are similar to learning in MRFs. A key difference is that the “model
marginals” are different for each data case, because the normalization constant Z(x("))
is different.

(see HW2, HW3)
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Discussion S crraminative CRF e(y 1) Example: Logistic Regression @—9@
enevative Mme Q(xjy)
(@.\fw'r\j Logistic regression is a simple CRF with y € {0,1}.
Why CRFs?
T 1 —l ep0Tx Iy =1 ' 7o
> It's often better not to learn a model for p(x) if it is not needed, e.g., if you only og po(ylx) = Z(x) eXp(\;_[y\*_J]) (7‘(5[975‘) =/
want to predict p(y|x). This is especially true if we have lots of data. (D(X,\f]S) Y
» But it may be better to use an MRF and learn a full model p(x,y) for the joint Z(x) = exp(0Tx) +1
distribution, especially if the model is “correct” and with smaller data sets.
(Intuition: the x data can help you learn the correct model faster.)
( ( 1| ) exp(@Tx) s¢ m\ola (@‘!7(>
=1lx)=———~ =
b\ag / \[()Lrlo\l/\(Q
—_ Cr o0
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Example: Chain CRF

One way to view a chain-structured CRF is as a sequence of logistic regression models,
with pairwise connctions between adjacent y variables to encourage a particular
sequential structure in predicted labels:

o~ —~ P
QD))
) ) )

('l/nociQ
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Overflow/Underflow and Log-Sum-Exp

» When factor values are small or large, or with many factors, messages can
underflow or overflow since they are products of many terms. A common solution is
to manipulate all factors and messages in log space.

» Example: consider the common factor manipulation

W@%P(ﬂ*))‘))
A(z) =" B(x,y)C(y)

Let's computela(x) = log A(z) from B(z,y) = log B(z,y) and v(y) = log C(y)

» Step 1: multiplication of factors is addition of log-factors

Az, y) = log(B(z,y)C(y)) = B(z,y) +7(y)
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» Step 2: marginalization requires exponentiat}ig\r(] g“log-sum-exp”)
«©
VYA S
a(z) = log (Z exp A(L@/))

Y

7\(53-)
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Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow

k
logsumexp(az, ..., ak): [ocﬁ = cxpa;

> ¢ < max; a;
> return ¢ + log Y, exp(a; — ¢)

See scipy.special.logsumexp

(Comment: log-space implementation probably not needed in HW2, probably needed in

HW3.)
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