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Message Passing Derivation

Let's go back to our chain example. Suppose we want to compute p(z4)? Which
variables should we eliminate, and in what order?
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What if we want to compute p(z:3)? Which variables should we eliminate, and in what
order?
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Message Passing Derivation

When doing “leaf-first” variable elimination to compute any marginal p(z;), there are
only 6 different intermediate factors

m1—-2,M2-3,M3—-4, 1M4-3,1M3-53,M2-1

Let's call m;_,; the “message” from j to i.

We can compute Z by “collecting” messages at any node:

Z:Zqﬁi(xi) H mjsi(x;)

JjEnb(i)

The general formula for a marginal is similar, but we omit the final summation and
normalize:

pe) = oile) T[ miiw)

ing Implementation

jenb(7)
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Message Passing Derivation Message Passing in a Chain
The messages satisfy recurrences, e.g.
» Initialize mo—1(z1) = 1, mptr1n(zs) = 1.
m r3)=>» m x x x9,T )
2-3(3) % 1-2(22)2(22) P23(22, 23) > Fori—2ton
> leth=i—2 j=i—1
The message m;_1;(x;) sums out all variables from the product of all factors “to the > Let myi(m) = 3., ke (25)05(25) i (24, x5)
left” of z; » Fori=mn—1down to 1
The message m;+1-,i(2;) has a similar recurrence, and sums out variables/factors “to > leth=i4+2 j=i+1
the right”. > Let mysi(mi) = X2, mk(5) @5 (2) b3 (w3, )
Using the recurrences, we can compute all messages, and therefore all marginals in two » Compute each unnormalized marginal as p(xz;) = mi—1-(2;)di (x3)mip1-i(2;)
passes through the chain, one in each direction. R ) ) . 1.
» Compute Z =3, p(x;) for any 4, and normalize each marginal: p(z;) = 5p(z;)
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Pairwise Marginals

» Correct formula for a pairwise marginal p(x;, z;11)?

1
p(xi, Tig1) = Zmi—lai(xi)¢i(fi)¢i,i+l(l’iv Ti1) Pit1 (Tig1) Mig2—it1(Tig1)
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Discussion: Message Passing vs. Variable Elimination

v

Variable elimination can compute marginals and Z exponentially faster than
direct summation for nice enough graphs (e.g. chains, trees)

v

Naively, to compute all single-node marginals you would have to run variable
elimination n times, once per node (but this would repeat work)

> Message passing can compute all the marginals for the same cost as running
variable elimination twice, so is a factor of =~ n/2 faster than naive variable
elimination

v

(Message passing is nice, but you could say variable elimination did the heavy
lifting.)
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Message Passing in Trees

A more general version of message passing works for any tree-structured MRF, that is,
an MRF of the following form where G = (V, E) is a tree:

p(x) =[] i) [ ¢iswi,z))-

eV (i,§)eE
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Message passing can be derived from variable elimination. Take z; as the root and
eliminate variables from leaf to root. We get

Z:Zqﬁi(;ci) H mj—i(s)
T j€nb(z)

p(zi) = %dh‘(%’) 1T mjsi(a:)

jenb(z)

The “message” m;_,;(x;) is the result of summing out all factors and variables in the
subtree T} rooted at x;.
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By similar reasoning, the pairwise marginal for (i,5) € E is

H méaj(xj)

tenb(i)\i

P(l“z'»l“j):%@(Ii)@j(%‘v%)ﬂﬁj(%) I ki)

kenb(i)\j
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Recurrence for Messages Message-Passing
The messages satisfy the following recurrence
mji(z:) = Z¢j($j)¢ij(ﬂfi73?j) H M () Importantly, the message from j to ¢ doesn’t depend on which particular noc.ie is the
R root. There are only 2(n — 1) total messages and we can compute them all in two
T kenb(j)\¢
passes through the tree.
This can be understood by. expanding the. summation over T} to gr.oup‘factors for Say that j is ready to send to i if j has received messages from all k € nb(j) \ i.
subtrees rooted at each child of z;, that is, for each node k € nb(j) \ i.
Message passing: while any node j is ready to send to 7, compute m;_,; using
recurrence from previous slide.
This algorithm is described asynchronsously (“ready-to-send”), but in practice: pass
messages from leaves to root of tree and back.
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Message-Passing Summary

mjsi(zi) =Y ¢ix))bij (@) [ masy(ay)

Zj kenb(5)\i
Zi J€nb(i)

p(@;) = %@‘(l’i) I myi(a)

jEnb(4)

p(xz’7xj):%Qbi(xi)ﬁbij(«rh«rj)(bj(xj) 1T mesile) [ mesjlay) (L)) €E

kenb(i)\j fenb(j)\i
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Discussion Sketches of Extensions
> Message-passing computes all single and pairwise marginals at roughly 2x cost of » What if the MRF has factors on more than two variables? (keyword: factor graphs)
variable elimination
» It is restricted to pairwise MRFs and trees, but can be extended in some ways
» For exactly answering one query in any MRF, variable elimination is faster than
message passing
» For exactly answering a set of marginal queries, variable elimination usually takes at
most a factor of O(n) more time
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» What if the MRF is not tree-structured, i.e., G has cycles?

» What if the MRF is not tree-structured, i.e., G has cycles?
» Answer 1: group nodes (keyword: clique trees or junction trees)

» Answer 2: use message-passing as a fixed-point iteration (keyword: loopy belief
propagation)
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» When factor values are small or large, or with many factors, messages can
underflow or overflow since they are products of many terms. A common solution is
to manipulate all factors and messages in log space.
Message-Passing Implementation » Example: consider the common factor manipulation
A(x) = Blz,y)Cly)
y
Let's compute a(z) = log A(x) from B(z,y) = log B(z,y) and v(y) = log C(y)
» Step 1: multiplication of factors is addition of log-factors
Az, y) :=log(B(z,y)C(y)) = Bz, y) +(y)
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» Step 2: marginalization requires exponentiation (“log-sum-exp")

az) = log (Z exp Az, y)>

Y
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Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow
logsumexp(az, . .., ak):

> C < max;a;
> return ¢+ log Y, exp(a; — ¢)

See scipy.special.logsumexp

(Comment: log-space implementation probably not needed in HW2, probably needed in
HWS3.)
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