Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation
0000 [e]e]e]e)

COMPSCI 688: Probabilistic Graphical Models
Lecture 9: Message Passing

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1/26

Message Passing in Chains
©00000000

Message Passing in Trees Discussion and Extensions
0000000 00000

Message Passing in Chains

Message-Passing Implementation
0000

2/26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

080000000 0000000 00000 0000

Message Passing Derivation

Let's go back to our chain example. Suppose we want to compute p(z4)? Which
variables should we eliminate, and in what order?

3/26

Message Passing in Chains
008000000

Message Passing in Trees Discussion and Extensions
0000000 00000

Message-Passing Implementation

0000

4/26

Message Passing in Chains
000800000

assing in Trees D

ission and Extensions

What if we want to compute p(z:3)? Which variables should we eliminate, and in what
order?

Message-Passing Implementation

Message Passing in Chains
000080000

ssion and Extension Message-Pa

Message Passing Derivation

When doing “leaf-first” variable elimination to compute any marginal p(z;), there are
only 6 different intermediate factors

m1—-2,M2-3,M3—-4, 1M4-3,1M3-53,M2-1

Let's call m;_,; the “message” from j to i.

We can compute Z by “collecting” messages at any node:

Z:Zqﬁi(xi) H mjsi(x;)

JjEnb(i)

The general formula for a marginal is similar, but we omit the final summation and
normalize:

pe) = oile) T[miiw)

ing Implementation

jenb(7)
5/26 6/26
Message Passing in Chains Discussion and Extensions Message-Passing Implementation Message Passing in Chains ing in Tre sions Message-Passing Implementation
000008000 00000 000000800
Message Passing Derivation Message Passing in a Chain
The messages satisfy recurrences, e.g.
» Initialize mo—1(z1) = 1, mptr1n(zs) = 1.
m r3)=>» m x x x9,T)
2-3(3) % 1-2(22)2(22) P23(22, 23) > Fori—2ton
> leth=i—2 j=i—1
The message m;_1;(x;) sums out all variables from the product of all factors “to the > Let myi(m) = 3., ke (25)05(25) i (24, x5)
left” of z; » Fori=mn—1down to 1
The message m;+1-,i(2;) has a similar recurrence, and sums out variables/factors “to > leth=i4+2 j=i+1
the right”. > Let mysi(mi) = X2, mk(5) @5 (2) b3 (w3,)
Using the recurrences, we can compute all messages, and therefore all marginals in two » Compute each unnormalized marginal as p(xz;) = mi—1-(2;)di (x3)mip1-i(2;)
passes through the chain, one in each direction. R)) . 1.
» Compute Z =3, p(x;) for any 4, and normalize each marginal: p(z;) = 5p(z;)
7/26 8/26

Message Passing in Chains

ing in Trees Discussion and Extensions
000000080 O

Passing Implementatio

Pairwise Marginals

» Correct formula for a pairwise marginal p(x;, z;11)?

1
p(xi, Tig1) = Zmi—lai(xi)¢i(fi)¢i,i+l(l’iv Ti1) Pit1 (Tig1) Mig2—it1(Tig1)

9/26

Message Passing in Chains

assing Implementation
000000008

Discussion: Message Passing vs. Variable Elimination

v

Variable elimination can compute marginals and Z exponentially faster than
direct summation for nice enough graphs (e.g. chains, trees)

v

Naively, to compute all single-node marginals you would have to run variable
elimination n times, once per node (but this would repeat work)

> Message passing can compute all the marginals for the same cost as running
variable elimination twice, so is a factor of =~ n/2 faster than naive variable
elimination

v

(Message passing is nice, but you could say variable elimination did the heavy
lifting.)

10/26

g in Chains Message Passing in Trees
000000

on and Extensions

Passing Implementation

Message Passing in Trees

11/26

g in Chains Message Passing in Trees

0800000

sions assing Implementation

Message Passing in Trees

A more general version of message passing works for any tree-structured MRF, that is,
an MRF of the following form where G = (V, E) is a tree:

p(x) =[] i) [¢iswi,z))-

eV (i,§)eE

12/26

Message Passing in Trees
0080000

Message passing can be derived from variable elimination. Take z; as the root and
eliminate variables from leaf to root. We get

Z:Zqﬁi(;ci) H mj—i(s)
T j€nb(z)

p(zi) = %dh‘(%’) 1T mjsi(a:)

jenb(z)

The “message” m;_,;(x;) is the result of summing out all factors and variables in the
subtree T} rooted at x;.

Message Passing in Trees
0008000

By similar reasoning, the pairwise marginal for (i,5) € E is

H méaj(xj)

tenb(i)\i

P(l“z'»l“j):%@(Ii)@j(%‘v%)ﬂﬁj(%) I ki)

kenb(i)\j

13/26 14/26
Message Passing in Trees Message Passing in Trees
Recurrence for Messages Message-Passing
The messages satisfy the following recurrence
mji(z:) = Z¢j($j)¢ij(ﬂfi73?j) H M () Importantly, the message from j to ¢ doesn’t depend on which particular noc.ie is the
R root. There are only 2(n — 1) total messages and we can compute them all in two
T kenb(j)\¢
passes through the tree.
This can be understood by. expanding the. summation over T} to gr.oup‘factors for Say that j is ready to send to i if j has received messages from all k € nb(j) \ i.
subtrees rooted at each child of z;, that is, for each node k € nb(j) \ i.
Message passing: while any node j is ready to send to 7, compute m;_,; using
recurrence from previous slide.
This algorithm is described asynchronsously (“ready-to-send”), but in practice: pass
messages from leaves to root of tree and back.
15/26 16 /26

ge-Passing Implementation

g in Chains Message Passing in Trees Discussion and Extensions

0000008

Message-Passing Summary

mjsi(zi) =Y ¢ix))bij (@) [masy(ay)

Zj kenb(5)\i
Zi J€nb(i)

p(@;) = %@‘(l’i) I myi(a)

jEnb(4)

p(xz’7xj):%Qbi(xi)ﬁbij(«rh«rj)(bj(xj) 1T mesile) [mesjlay) (L)) €E

kenb(i)\j fenb(j)\i

ing in Chains assing Implementation

g in Trees Discussion and Extensions
0000

Discussion and Extensions

17/26 18/26
g in Chains Discussion and Extensions e-Passing Implementation Y ing in Chains g in Trees Discussion and Extensions Y assing Implementation
[o] lelele} [e 00®e00 [e
Discussion Sketches of Extensions
> Message-passing computes all single and pairwise marginals at roughly 2x cost of » What if the MRF has factors on more than two variables? (keyword: factor graphs)
variable elimination
» It is restricted to pairwise MRFs and trees, but can be extended in some ways
» For exactly answering one query in any MRF, variable elimination is faster than
message passing
» For exactly answering a set of marginal queries, variable elimination usually takes at
most a factor of O(n) more time
19/26 20/26

assing in Trees Discussion and Extensions Message-Passing Implementation assing in Chains
0080)OO0

g in Trees Discussion and Extensions Message-Passing Implementation
000e

» What if the MRF is not tree-structured, i.e., G has cycles?

» What if the MRF is not tree-structured, i.e., G has cycles?
» Answer 1: group nodes (keyword: clique trees or junction trees)

» Answer 2: use message-passing as a fixed-point iteration (keyword: loopy belief
propagation)

21/26 22/26
Me Passing in Chains Discussion and Extensions lxlgzsgge-r—’assing Implementation Discussion and Extensions glizsgge-Passing Implementation
» When factor values are small or large, or with many factors, messages can
underflow or overflow since they are products of many terms. A common solution is
to manipulate all factors and messages in log space.
Message-Passing Implementation » Example: consider the common factor manipulation
A(x) = Blz,y)Cly)
y
Let's compute a(z) = log A(x) from B(z,y) = log B(z,y) and v(y) = log C(y)
» Step 1: multiplication of factors is addition of log-factors
Az, y) :=log(B(z,y)C(y)) = Bz, y) +(y)
23/26 24 /26

Message Passing in Chain Message Passing in Tree: Discussion and Extensions

» Step 2: marginalization requires exponentiation (“log-sum-exp")

az) = log (Z exp Az, y)>

Y

Message-Passing Implementation
ooceo

25/26

Message Passing in Chains Message Passing in Trees Discussion and Extension Message-Passing Implementation
oooe

Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow
logsumexp(az, . .., ak):

> C < max;a;
> return ¢+ log Y, exp(a; — ¢)

See scipy.special.logsumexp

(Comment: log-space implementation probably not needed in HW2, probably needed in
HWS3.)

26/26

