Message Passing in Chains 000000000	Message Passing in Trees	Discussion and Extensions 00000	Message-Passing Implementation	Message Passing in Chains •00000000	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation	
C	OMPSCI 688: Prob Lecture 9:	abilistic Graphical N Message Passing	odels					
	Dan	Sheldon		Message Passing in Chains				
	Manning College of Info University of M	rmation and Computer Sciences lassachusetts Amherst						
Partially bas	sed on materials by Benjamin M. Marlin (m	arlin@cs.umass.edu) and Justin Domke (dor	nke@cs.umass.edu) 1 / 26				2/26	
Message Passing in Chains	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation	Message Passing in Chains	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation	
Message Passin Let's go back to variables should	g Derivation o our chain example. Sup we eliminate, and in wha	pose we want to compute at order?	$p(x_4)$? Which					
			3 / 26				4 / 26	

Message Passing in Chains Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation	Message Passing in Chains	Message Passing in Trees 0000000	Discussion and Extensions	Message-Passing Implementation
What if we want to compute $p(x_3)$? Which order?	variables should we elir	ninate, and in what	Message Passing When doing "lea only 6 different Let's call $m_{j \rightarrow i}$ We can compute The general form normalize:	g Derivation af-first" variable eliminatic intermediate factors $m_{1\rightarrow 2}, m_{2\rightarrow 3}, m_{3\rightarrow 4}$ the "message" from j to a Z by "collecting" messa $Z = \sum_{x_i} \phi_i(x_i)$ mula for a marginal is similar $p(x_i) = \frac{1}{Z} \phi_i(x_i)$	on to compute any margin $m_{4\to3}, m_{3\to3}, m_{2\to1}$ i. ages at any node: $m_{j\in nb(i)} m_{j\to i}(x_i)$ ilar, but we omit the final $m_{i} \prod_{j\in nb(i)} m_{j\to i}(x_i)$	tal $p(x_i)$, there are summation and
Message Passing in Chains Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation	Message Passing in Chains	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation
Message Passing Derivation			Message Passing	g in a Chain		
The messages satisfy recurrences, e.g.				-		
			► Initialize m	$_{0\to 1}(x_1) = 1$, $m_{n+1\to n}(x_n)$	(n) = 1.	
$m_{2\to3}(x_3) = \sum_{x_2} m_{1\to2}$	$(x_2)\phi_2(x_2)\phi_{23}(x_2,x_3)$		For $i = 2$ to n			
The message $m_{i-1\rightarrow i}(x_i)$ sums out all varial left" of x_i The message $m_{i+1\rightarrow i}(x_i)$ has a similar recur the right". Using the recurrences, we can compute all n passes through the chain, one in each direct	• Let $k = i - 2$, $j = i - 1$ • Let $m_{j \to i}(x_i) = \sum_{x_j} m_{k \to j}(x_j)\phi_j(x_j)\phi_{ij}(x_i, x_j)$ • For $i = n - 1$ down to 1 • Let $k = i + 2$, $j = i + 1$ • Let $m_{j \to i}(x_i) = \sum_{x_j} m_{k \to j}(x_j)\phi_j(x_j)\phi_{ij}(x_i, x_j)$ • Compute each unnormalized marginal as $\hat{p}(x_i) = m_{i-1 \to i}(x_i)\phi_i(x_i)m_{i+1 \to i}(x_i)$ • Compute $Z = \sum_{x_i} \hat{p}(x_i)$ for any i , and normalize each marginal: $p(x_i) = \frac{1}{Z}\hat{p}(x_i)$					

Message Passing in Chains 0000000€0	Message Passing in Trees	Discussion and Extensions 00000	Message-Passing Implementation	Message Passing in Chains 00000000●	Message Passing in Trees 0000000	Discussion and Extensions	Message-Passing Implementation	
Pairwise Margin	als			Discussion: Mes	sage Passing vs. Va	ariable Elimination		
 Correct for 	mula for a pairwise margi	nal $p(x_i, x_{i+1})$?						
$p(x_i, x_{i+1})$	$=\frac{1}{Z}m_{i-1\to i}(x_i)\phi_i(x_i)\phi_i$	$_{i+1}(x_i, x_{i+1})\phi_{i+1}(x_{i+1})n$	$n_{i+2 \to i+1}(x_{i+1})$	 Variable elimination can compute marginals and Z exponentially faster than direct summation for nice enough graphs (e.g. chains, trees) 				
	Z			 Naively, to compute all single-node marginals you would have to run variable elimination n times, once per node (but this would repeat work) 				
				 Message pas variable elim elimination 	ssing can compute all th nination twice, so is a fa	e marginals for the same of ctor of $\approx n/2$ faster that	cost as running n naive variable	
				 (Message pa lifting.) 	assing is nice, but you co	ould say variable eliminatio	on did the heavy	
			9 / 26				10 / 26	
Message Passing in Chains	Message Passing in Trees •000000	Discussion and Extensions	Message-Passing Implementation	Message Passing in Chains	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation	
				Message Passing	g in Trees			
	Massage P	accing in Trace		A more general v	version of message passir	ng works for any <i>tree-strue</i>	ctured MRF, that is,	
	wiessage F	assing in trees		an MRF of the f	ollowing form where G =	= (V, E) is a tree:		
					$p(\mathbf{x}) = \prod_{i \in V} \phi_i(z)$	$(x_i) \prod_{(i,j)\in E} \phi_{ij}(x_i, x_j).$		
			11 / 26				12/26	

Message Passing in Chains 000000000 Message Passing in Trees 000000000 Discussion and Extensions 0000 Message-Passing Implementation 0000	Message Passing in Chains 000000000 Message Passing in Trees 00000000 Discussion and Extensions 00000 Message-Passing Implementation 0000				
Message passing can be derived from variable elimination. Take x_i as the root and eliminate variables from leaf to root. We get	By similar reasoning, the pairwise marginal for $(i,j)\in E$ is				
eliminate variables from leaf to root. We get $Z = \sum_{x_i} \phi_i(x_i) \prod_{j \in nb(i)} m_{j \to i}(x_i)$ $p(x_i) = \frac{1}{Z} \phi_i(x_i) \prod_{j \in nb(i)} m_{j \to i}(x_i)$ The "message" $m_{j \to i}(x_i)$ is the result of summing out all factors and variables in the subtree T_j rooted at x_j .	$p(x_i, x_j) = \frac{1}{Z} \phi_i(x_i) \phi_{ij}(x_i, x_j) \phi_j(x_j) \prod_{k \in nb(i) \backslash j} m_{k \to i}(x_i) \prod_{\ell \in nb(j) \backslash i} m_{\ell \to j}(x_j)$				
13/26	14/26				
Message Passing in Chains 00000000 Message Passing in Trees 0000000 Discussion and Extensions 00000 Message-Passing Implementation 0000	Message Passing in Chains 00000000 Message Passing in Trees 000000 Discussion and Extensions 00000 Message-Passing Implementation 0000				
Recurrence for Messages	Message-Passing				
The messages satisfy the following recurrence					
$m_{j \to i}(x_i) = \sum_{x_j} \phi_j(x_j) \phi_{ij}(x_i, x_j) \prod_{k \in nb(j) \setminus i} m_{k \to j}(x_j)$	Importantly, the message from j to i doesn't depend on which particular node is the root. There are only $2(n-1)$ total messages and we can compute them all in two passes through the tree.				
This can be understood by expanding the summation over T_j to group factors for subtrees rooted at each child of x_i , that is, for each node $k \in nb(j) \setminus j$	Say that j is ready to send to i if j has received messages from all $k \in nb(j) \setminus i$.				
	Message passing : while any node j is ready to send to i , compute $m_{j \to i}$ using recurrence from previous slide.				
	This algorithm is described asynchronsously ("ready-to-send"), but in practice: pass messages from leaves to root of tree and back.				
15/26	16/26				

Message Passing in Chains	Message Passing in Trees 0000000	Discussion and Extensions	Message-Passing Implementation	Message Passing in Chains	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation
What if theAnswer 1:	MRF is not tree-structur group nodes (keyword: <i>c</i>	red, i.e., G has cycles? <i>lique trees</i> or <i>junction tre</i>	es)	 What if the Answer 2: propagation 	e MRF is not tree-structu use message-passing as a η)	red, i.e., <i>G</i> has cycles? a fixed-point iteration (ke	yword: <i>loopy belief</i>
			21/26				22 / 26
Message Passing in Chains	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation •000	Message Passing in Chains	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation
				Overflow/Under	flow and Log-Sum-	Exp	
				 When factor underflow on to manipula 	or values are small or larg or overflow since they are ate all factors and messag	e, or with many factors, r products of many terms. / ges in log space.	nessages can A common solution is
	Message-Passir	ng Implementation		Example : consider the common factor manipulation			
					A(x) =	$= \sum_{y} B(x, y) C(y)$	
				Let's comp	ute $\alpha(x) = \log A(x)$ from	n $\beta(x,y) = \log B(x,y)$ ar	nd $\gamma(y) = \log C(y)$
				► Step 1: m	ultiplication of factors is a	addition of log-factors	
					$\lambda(x,y) := \log(B(x))$	$(x, y)C(y)) = \beta(x, y) + \gamma(y)$	(y)
			23 / 26				24 / 26

