
Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

COMPSCI 688: Probabilistic Graphical Models
Lecture 9: Message Passing

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message Passing in Chains

2 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message Passing Derivation
Let’s go back to our chain example. Suppose we want to compute p(x4)? Which
variables should we eliminate, and in what order?

3 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

4 / 26



Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

What if we want to compute p(x3)? Which variables should we eliminate, and in what
order?

5 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message Passing Derivation
When doing “leaf-first” variable elimination to compute any marginal p(xi), there are
only 6 different intermediate factors

m1→2, m2→3, m3→4, m4→3, m3→3, m2→1

Let’s call mj→i the “message” from j to i.

We can compute Z by “collecting” messages at any node:

Z =
∑

xi

ϕi(xi)
∏

j∈nb(i)
mj→i(xi)

The general formula for a marginal is similar, but we omit the final summation and
normalize:

p(xi) = 1
Z

ϕi(xi)
∏

j∈nb(i)
mj→i(xi)

6 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message Passing Derivation
The messages satisfy recurrences, e.g.

m2→3(x3) =
∑

x2

m1→2(x2)ϕ2(x2)ϕ23(x2, x3)

The message mi−1→i(xi) sums out all variables from the product of all factors “to the
left” of xi

The message mi+1→i(xi) has a similar recurrence, and sums out variables/factors “to
the right”.

Using the recurrences, we can compute all messages, and therefore all marginals in two
passes through the chain, one in each direction.

7 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message Passing in a Chain

▶ Initialize m0→1(x1) = 1, mn+1→n(xn) = 1.
▶ For i = 2 to n

▶ Let k = i− 2, j = i− 1
▶ Let mj→i(xi) =

∑
xj

mk→j(xj)ϕj(xj)ϕij(xi, xj)

▶ For i = n− 1 down to 1
▶ Let k = i + 2, j = i + 1
▶ Let mj→i(xi) =

∑
xj

mk→j(xj)ϕj(xj)ϕij(xi, xj)

▶ Compute each unnormalized marginal as p̂(xi) = mi−1→i(xi)ϕi(xi)mi+1→i(xi)
▶ Compute Z = ∑

xi
p̂(xi) for any i, and normalize each marginal: p(xi) = 1

Z p̂(xi)

8 / 26



Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Pairwise Marginals
▶ Correct formula for a pairwise marginal p(xi, xi+1)?

p(xi, xi+1) = 1
Z

mi−1→i(xi)ϕi(xi)ϕi,i+1(xi, xi+1)ϕi+1(xi+1)mi+2→i+1(xi+1)

9 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Discussion: Message Passing vs. Variable Elimination

▶ Variable elimination can compute marginals and Z exponentially faster than
direct summation for nice enough graphs (e.g. chains, trees)

▶ Naively, to compute all single-node marginals you would have to run variable
elimination n times, once per node (but this would repeat work)

▶ Message passing can compute all the marginals for the same cost as running
variable elimination twice, so is a factor of ≈ n/2 faster than naive variable
elimination

▶ (Message passing is nice, but you could say variable elimination did the heavy
lifting.)

10 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message Passing in Trees

11 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message Passing in Trees

A more general version of message passing works for any tree-structured MRF, that is,
an MRF of the following form where G = (V, E) is a tree:

p(x) =
∏

i∈V

ϕi(xi)
∏

(i,j)∈E

ϕij(xi, xj).

12 / 26



Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message passing can be derived from variable elimination. Take xi as the root and
eliminate variables from leaf to root. We get

Z =
∑

xi

ϕi(xi)
∏

j∈nb(i)
mj→i(xi)

p(xi) = 1
Z

ϕi(xi)
∏

j∈nb(i)
mj→i(xi)

The “message” mj→i(xi) is the result of summing out all factors and variables in the
subtree Tj rooted at xj .

13 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

By similar reasoning, the pairwise marginal for (i, j) ∈ E is

p(xi, xj) = 1
Z

ϕi(xi)ϕij(xi, xj)ϕj(xj)
∏

k∈nb(i)\j

mk→i(xi)
∏

ℓ∈nb(j)\i

mℓ→j(xj)

14 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Recurrence for Messages
The messages satisfy the following recurrence

mj→i(xi) =
∑

xj

ϕj(xj)ϕij(xi, xj)
∏

k∈nb(j)\i

mk→j(xj)

This can be understood by expanding the summation over Tj to group factors for
subtrees rooted at each child of xj , that is, for each node k ∈ nb(j) \ i.

15 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message-Passing

Importantly, the message from j to i doesn’t depend on which particular node is the
root. There are only 2(n− 1) total messages and we can compute them all in two
passes through the tree.

Say that j is ready to send to i if j has received messages from all k ∈ nb(j) \ i.

Message passing: while any node j is ready to send to i, compute mj→i using
recurrence from previous slide.

This algorithm is described asynchronsously (“ready-to-send”), but in practice: pass
messages from leaves to root of tree and back.

16 / 26



Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message-Passing Summary

mj→i(xi) =
∑

xj

ϕj(xj)ϕij(xi, xj)
∏

k∈nb(j)\i

mk→j(xj)

Z =
∑

xi

ϕi(xi)
∏

j∈nb(i)
mj→i(xi)

p(xi) = 1
Z

ϕi(xi)
∏

j∈nb(i)
mj→i(xi)

p(xi, xj) = 1
Z

ϕi(xi)ϕij(xi, xj)ϕj(xj)
∏

k∈nb(i)\j

mk→i(xi)
∏

ℓ∈nb(j)\i

mℓ→j(xj) (i, j) ∈ E

17 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Discussion and Extensions

18 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Discussion
▶ Message-passing computes all single and pairwise marginals at roughly 2x cost of

variable elimination
▶ It is restricted to pairwise MRFs and trees, but can be extended in some ways
▶ For exactly answering one query in any MRF, variable elimination is faster than

message passing
▶ For exactly answering a set of marginal queries, variable elimination usually takes at

most a factor of O(n) more time

19 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Sketches of Extensions
▶ What if the MRF has factors on more than two variables? (keyword: factor graphs)

20 / 26



Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

▶ What if the MRF is not tree-structured, i.e., G has cycles?
▶ Answer 1: group nodes (keyword: clique trees or junction trees)

21 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

▶ What if the MRF is not tree-structured, i.e., G has cycles?
▶ Answer 2: use message-passing as a fixed-point iteration (keyword: loopy belief

propagation)

22 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Message-Passing Implementation

23 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Overflow/Underflow and Log-Sum-Exp
▶ When factor values are small or large, or with many factors, messages can

underflow or overflow since they are products of many terms. A common solution is
to manipulate all factors and messages in log space.

▶ Example: consider the common factor manipulation

A(x) =
∑

y

B(x, y)C(y)

Let’s compute α(x) = log A(x) from β(x, y) = log B(x, y) and γ(y) = log C(y)
▶ Step 1: multiplication of factors is addition of log-factors

λ(x, y) := log(B(x, y)C(y)) = β(x, y) + γ(y)

24 / 26



Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

▶ Step 2: marginalization requires exponentiation (“log-sum-exp”)

α(x) = log
(∑

y

exp λ(x, y)
)

25 / 26

Message Passing in Chains Message Passing in Trees Discussion and Extensions Message-Passing Implementation

Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow

logsumexp(a1, . . . , ak):
▶ c← maxi ai

▶ return c + log∑i exp(ai − c)

See scipy.special.logsumexp

(Comment: log-space implementation probably not needed in HW2, probably needed in
HW3.)

26 / 26


