

Message Passing in Chains	Message Pasing in Trees	Discussion and Extensions 0.0000	MessagePassing Implementation

Message Passing Derivation

The messages satisfy recurrences, e.g

$$
m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) \phi_{2}\left(x_{2}\right) \phi_{23}\left(x_{2}, x_{3}\right)
$$

The message $m_{i-1 \rightarrow i}\left(x_{i}\right)$ sums out all variables from the product of all factors "to the left" of x_{i}
The message $m_{i+1 \rightarrow i}\left(x_{i}\right)$ has a similar recurrence, and sums out variables/factors "to the right".

Using the recurrences, we can compute all messages, and therefore all marginals in two passes through the chain, one in each direction.

Message Passing Derivation
When doing "leaf-first" variable elimination to compute any marginal $p\left(x_{i}\right)$, there are only 6 different intermediate factors

$$
m_{1 \rightarrow 2}, m_{2 \rightarrow 3}, m_{3 \rightarrow 4}, \quad m_{4 \rightarrow 3}, m_{3 \rightarrow 3}, m_{2 \rightarrow 1}
$$

Let's call $m_{j \rightarrow i}$ the "message" from j to i.
We can compute Z by "collecting" messages at any node:

$$
Z=\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \prod_{j \in \mathrm{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

The general formula for a marginal is similar, but we omit the final summation and normalize:

$$
p\left(x_{i}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \prod_{j \in \mathrm{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

Message Passing in a Chain

- Initialize $m_{0 \rightarrow 1}\left(x_{1}\right)=1, m_{n+1 \rightarrow n}\left(x_{n}\right)=1$.
- For $i=2$ to n
- Let $k=i-2, j=i-1$
- Let $m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} m_{k \rightarrow j}\left(x_{j}\right) \phi_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right)$
- For $i=n-1$ down to 1
- Let $k=i+2, j=i+1$
- Let $m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} m_{k \rightarrow j}\left(x_{j}\right) \phi_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right)$
- Compute each unnormalized marginal as $\hat{p}\left(x_{i}\right)=m_{i-1 \rightarrow i}\left(x_{i}\right) \phi_{i}\left(x_{i}\right) m_{i+1 \rightarrow i}\left(x_{i}\right)$
- Compute $Z=\sum_{x_{i}} \hat{p}\left(x_{i}\right)$ for any i, and normalize each marginal: $p\left(x_{i}\right)=\frac{1}{Z} \hat{p}\left(x_{i}\right)$

Pairwise Marginals - Correct formula for a pairwise marginal $p\left(x_{i}, x_{i+1}\right)$? $p\left(x_{i}, x_{i+1}\right)=\frac{1}{Z} m_{i-1 \rightarrow i}\left(x_{i}\right) \phi_{i}\left(x_{i}\right) \phi_{i, i+1}\left(x_{i}, x_{i+1}\right) \phi_{i+1}\left(x_{i+1}\right) m_{i+2 \rightarrow i+1}\left(x_{i+1}\right)$			

Discussion: Message Passing vs. Variable Elimination

- Variable elimination can compute marginals and Z exponentially faster than direct summation for nice enough graphs (e.g. chains, trees)
- Naively, to compute all single-node marginals you would have to run variable elimination n times, once per node (but this would repeat work)
- Message passing can compute all the marginals for the same cost as running variable elimination twice, so is a factor of $\approx n / 2$ faster than naive variable elimination
- (Message passing is nice, but you could say variable elimination did the heavy lifting.)

Message Passing in Chains Ooocoiocos	Message Passing in Trees - $\bullet 00000$	Discussion and Extensions Oocoso	Message-Passing Implementation Ooco

Message Passing in Trees

A more general version of message passing works for any tree-structured MRF, that is, an MRF of the following form where $G=(V, E)$ is a tree:

$$
p(\mathbf{x})=\prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \phi_{i j}\left(x_{i}, x_{j}\right) .
$$

Message passing can be derived from variable elimination. Take x_{i} as the root and eliminate variables from leaf to root. We get

$$
\begin{aligned}
Z & =\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \prod_{j \in \mathrm{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right) \\
p\left(x_{i}\right) & =\frac{1}{Z} \phi_{i}\left(x_{i}\right) \prod_{j \in \mathrm{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right)
\end{aligned}
$$

The "message" $m_{j \rightarrow i}\left(x_{i}\right)$ is the result of summing out all factors and variables in the subtree T_{j} rooted at x_{j}.

Message Passing in Chains 000000000	Message Passing in Trees $0000 \cdot 00$	Discussion and Extensions 00000	$\begin{aligned} & \text { Message } \\ & 0 \end{aligned}$
000000000	0000 00	00000	0000

Recurrence for Messages
The messages satisfy the following recurrence

$$
m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \phi_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in \mathrm{nb}(j) \backslash i} m_{k \rightarrow j}\left(x_{j}\right)
$$

This can be understood by expanding the summation over T_{j} to group factors for subtrees rooted at each child of x_{j}, that is, for each node $k \in \mathrm{nb}(j) \backslash i$.

By similar reasoning, the pairwise marginal for $(i, j) \in E$ is

$$
p\left(x_{i}, x_{j}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \phi_{i j}\left(x_{i}, x_{j}\right) \phi_{j}\left(x_{j}\right) \prod_{k \in \operatorname{nb}(i) \backslash j} m_{k \rightarrow i}\left(x_{i}\right) \prod_{\ell \in \mathbf{n b}(j) \backslash i} m_{\ell \rightarrow j}\left(x_{j}\right)
$$

Message-Passing

Importantly, the message from j to i doesn't depend on which particular node is the root. There are only $2(n-1)$ total messages and we can compute them all in two passes through the tree.

Say that j is ready to send to i if j has received messages from all $k \in \mathrm{nb}(j) \backslash i$.
Message passing: while any node j is ready to send to i, compute $m_{j \rightarrow i}$ using recurrence from previous slide.

This algorithm is described asynchronsously ("ready-to-send"), but in practice: pass messages from leaves to root of tree and back.

Message Passing in Chains 000000000	Message Passing in Trees 000000•	Discussion and Extensions 00000	Mess	-Passing Implem	itation
Message-Passing Summary					
$m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \phi_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in \mathrm{nb}(j) \backslash i} m_{k \rightarrow j}\left(x_{j}\right)$					
$Z=\sum \phi_{i}\left(x_{i}\right) \quad \prod m_{j \rightarrow i}\left(x_{i}\right)$					
$p\left(x_{i}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \prod_{j \in \operatorname{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right)$					
$p\left(x_{i}, x_{j}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \phi_{i j}\left(x_{i}, x_{j}\right) \phi_{j}\left(x_{j}\right) \prod_{k \in \operatorname{nb}(i) \backslash j} m_{k \rightarrow i}\left(x_{i}\right) \prod_{\ell \in \operatorname{nb}(j) \backslash i} m_{\ell \rightarrow j}\left(x_{j}\right) \quad(i, j) \in E$					
17/26					

Message Passing in Chains	Message Passing in Trees 0000000	Discussion and Extensions -0000	Message-Passing Implementation
	Discussion	Extensions	

Message Passing in Chain 000000000	Message Passing in Trees 0000000	Discussion and Extensions -0.00	Message-Passing Implementation 0000

Sketches of Extensions

- What if the MRF has factors on more than two variables? (keyword: factor graphs)

- What if the MRF is not tree-structured, i.e., G has cycles?
- Answer 2: use message-passing as a fixed-point iteration (keyword: loopy belief propagation)

Overflow/Underflow and Log-Sum-Exp

- When factor values are small or large, or with many factors, messages can
underflow or overflow since they are products of many terms. A common solution is
to manipulate all factors and messages in log space.
- Example: consider the common factor manipulation

$$
A(x)=\sum_{y} B(x, y) C(y)
$$

Let's compute $\alpha(x)=\log A(x)$ from $\beta(x, y)=\log B(x, y)$ and $\gamma(y)=\log C(y)$

- Step 1: multiplication of factors is addition of log-factors

$$
\lambda(x, y):=\log (B(x, y) C(y))=\beta(x, y)+\gamma(y)
$$

- Step 2: marginalization requires exponentiation ("log-sum-exp")

$$
\alpha(x)=\log \left(\sum_{y} \exp \lambda(x, y)\right)
$$

Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow
logsumexp $\left(a_{1}, \ldots, a_{k}\right)$:

- $c \leftarrow \max _{i} a_{i}$
- return $c+\log \sum_{i} \exp \left(a_{i}-c\right)$

See scipy.special.logsumexp
(Comment: log-space implementation probably not needed in HW2, probably needed in HW3.)

