COMPSCI 688: Probabilistic Graphical Models Lecture 9: Message Passing Dan Sheldon Manning College of Information and Computer Sciences University of Massachusetts Amherst Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)	Message Passing in Chains	Message Pas ooooooo ssing in Tre Trees Messag	Discussion and Extension g in Chains	Messge Passing Implementation
Message Passing Derivation Let's go back to our chain example. Suppose we want to compute $p\left(x_{4}\right)$? Which variables should we eliminate, and in what order?	Message Passing in Chains	Message Passing in Trees 000000	Discusion and Extensions	Messge Passing Implementation

Message Passing in Chins	Message Passing in Trees	Discussion and Extensions	Message-Passing Implementation
What if we want to compute $p\left(x_{3}\right)$? Which variables should we eliminate, and in what order?			
5/26			

Message Passing in Chains OOOOO	Me	and Extensions	on

Message Passing Derivation

The messages satisfy recurrences, e.g.

$$
m_{1 \rightarrow 2} \frac{x_{2}}{\phi_{2}}-\left(x_{3}\right) \cdots
$$

$$
m_{2 \rightarrow 3}\left(x_{3}\right)=\sum_{x_{2}} m_{1 \rightarrow 2}\left(x_{2}\right) \phi_{2}\left(x_{2}\right) \phi_{23}\left(x_{2}, x_{3}\right)
$$

The message $m_{i-1 \rightarrow i}\left(x_{i}\right)$ sums out all variables from the product of all factors "to the left" of x_{i}
The message $m_{i+1 \rightarrow i}\left(x_{i}\right)$ has a similar recurrence, and sums out variables/factors "to the right".

Using the recurrences, we can compute all messages, and therefore all marginals in two passes through the chain, one in each direction.

Message Passing Derivation

When doing "leaf-first" variable elimination to compute any marginal $p\left(x_{i}\right)$, there are only 6 different intermediate factors

$$
m_{1 \rightarrow 2}, m_{2 \rightarrow 3}, m_{3 \rightarrow 4}, \quad m_{4 \rightarrow 3}, m_{3 \rightarrow ね} m_{2 \rightarrow 1}
$$

Let's call $m_{j \rightarrow i}$ the "message" from j to i.
We can compute Z by "collecting" messages at any node:

$$
Z=\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \prod_{j \in \operatorname{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right) \quad m_{i-1 \rightarrow i} \quad \mathscr{x}_{i} m_{i+1 \rightarrow i}
$$

The general formula for a marginal is similar, but we omit the final summation and normalize:

$$
p\left(x_{i}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \prod_{j \in \operatorname{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right)
$$

Message Passing in Chains 000000 •00	Message Passing in Trees 0000000	Discussion and Extensions 00000	Message-Passing ooson

Message Passing in a Chain $m_{0 \rightarrow 1} m_{1 \rightarrow 2,} m_{2 \rightarrow 3} \ldots m_{n \rightarrow n}$

$$
m_{2 \rightarrow 1} \ldots m_{n \rightarrow n-1} \quad m_{n+1 \rightarrow n}
$$

- Initialize $m_{0 \rightarrow 1}\left(x_{1}\right)=1, m_{n+1 \rightarrow n}\left(x_{n}\right)=1 . \quad \phi_{j}$
- For $i=2$ to $n \quad m_{k \rightarrow j}\left(x_{j}\right) \frac{\phi_{i j}}{x_{i}}$
- Let $k=i-2, j=i-1 \quad k=i-2 \quad j \quad n_{j} \rightarrow i$
- Let $m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} m_{k \rightarrow j}\left(x_{j}\right) \phi_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right)$
- For $i=n-1$ down to 1
- Let $k=i+2, j=i+1$

- Let $m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x j} m_{k \rightarrow j}\left(x_{j}\right) \phi_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right.$
- Compute each unnormalized marginal as $\hat{p}\left(x_{i}\right)=m_{i-1 \rightarrow i}\left(x_{i}\right) \phi_{i}\left(x_{i}\right) m_{i+1 \rightarrow i}\left(x_{i}\right)$
- Compute $Z=\sum_{x_{i}} \hat{p}\left(x_{i}\right)$ for any i, and normalize each marginal: $p\left(x_{i}\right)=\frac{1}{Z} \hat{p}\left(x_{i}\right)$

Pairwise Marginals - Correct formula for a pairwise marginal $p\left(x_{i}, x_{i+1}\right)$? $\left.m_{1 \rightarrow 2} \dot{x}_{2}\right) \phi_{27}\left(x_{3}\right) m_{t \rightarrow 3}$ $p\left(x_{i}, x_{i+1}\right)=\frac{1}{2} m_{i-1-i}\left(x_{i}\right) \phi_{i}\left(x_{i}\right) \phi_{i, i+1}\left(x_{i}, x_{i+1}\right) \phi_{i+1}\left(x_{i+1}\right) m_{i+s \rightarrow i+1}\left(x_{i+1}\right)$	Discussion: Message Passing vs. Variable Elimination - Variable elimination can compute marginals and Z exponentially faster than direct summation for nice enough graphs (e.g. chains, trees) - Naively, to compute all single-node marginals you would have to run variable elimination n times, once per node (but this would repeat work) - Message passing can compute all the marginals for the same cost as running variable elimination twice, so is a factor of $\approx n / 2$ faster than naive variable elimination - (Message passing is nice, but you could say variable elimination did the heavy lifting.)
9/26	10/26
$\substack{\text { Message Passing in Chains } \\ 000000000}$ Message Passing in Trees $\bullet 000000$ Discussion and Extensions 00000 Message-Passing 0000 Message Passing in Trees	Message Passing in Trees A more general version of message passing works for any tree-structured MRF, that is, an MRF of the following form where $G=(V, E)$ is a tree: $p(\mathbf{x})=\prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \phi_{i j}\left(x_{i}, x_{j}\right) .$

Message passing can be derived from variable elimination. Take x_{i} as the root and eliminate variables from leaf to root. We get

$$
\begin{aligned}
Z & =\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \prod_{j \in \mathrm{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right) \\
p\left(x_{i}\right) & =\frac{1}{Z} \phi_{i}\left(x_{i}\right) \prod_{j \in \mathrm{nb}(i)} m_{j \rightarrow i}\left(x_{i}\right)
\end{aligned}
$$

The "message" $m_{j \rightarrow i}\left(x_{i}\right)$ is the result of summing out all factors and variables in the subtree T_{j} rooted at x_{j}.

Recurrence for Messages
The messages satisfy the following recurrence

$$
m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}} \phi_{j}\left(x_{j}\right) \phi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in \mathrm{nb}(j) \backslash i} m_{k \rightarrow j}\left(x_{j}\right)
$$

This can be understood by expanding the summation over T_{j} to group factors for subtrees rooted at each child of x_{j}, that is, for each node $k \in \mathrm{nb}(j) \backslash i$.

By similar reasoning, the pairwise marginal for $(i, j) \in E$ is

Importantly, the message from j to i doesn't depend on which particular node is the root. There are only $2(n-1)$ total messages and we can compute them all in two passes through the tree.

Say that j is ready to send to i if j has received messages from all $k \in \mathrm{nb}(j) \backslash i$.
Message passing: while any node j is ready to send to i, compute $m_{j \rightarrow i}$ using recurrence from previous slide.

This algorithm is described asynchronsously ("ready-to-send"), but in practice: pass messages from leaves to root of tree and back.

Message-Passing Implementation

- What if the MRF is not tree-structured, i.e., G has cycles?
- Answer 2: use message-passing as a fixed-point iteration (keyword: loopy belief propagation)

$$
\begin{aligned}
& \text { Init } M_{i \rightarrow j}\left(x_{j}\right)=1 \text { for all }(i, j) \in \mathbb{E} \\
& \text { Move general schemes for } \\
& \text { approx inference } \\
& \text {-MCMC } \\
& \text { - Variational inference }
\end{aligned}
$$

Overflow/Underflow and Log-Sum-Exp

- When factor values are small or large, or with many factors, messages can underflow or overflow since they are products of many terms. A common solution is to manipulate all factors and messages in log space.
- Example: consider the common factor manipulation

$$
A(x)=\sum_{y} B(x, y) C(y)
$$

Let's compute $\alpha(x)=\log A(x)$ from $\beta(x, y)=\log B(x, y)$ and $\gamma(y)=\log C(y)$

- Step 1: multiplication of factors is addition of log-factors

$$
\lambda(x, y):=\log (B(x, y) C(y))=\beta(x, y)+\gamma(y)
$$

Message Passing in Chains Message Pasing in Trees Oocococoso $\begin{aligned} & \text { Discussion and Extensions } \\ & \text { Dococo }\end{aligned}$

- Step 2: marginalization requires exponentiation ("log-sum-exp")

$$
\alpha(x)=\log \left(\sum_{y} \exp \lambda(x, y)\right)
$$

Numerically Stable log-sum-exp

Before exponentiating, we need to be careful to shift values to avoid overflow/underflow
logsumexp $\left(a_{1}, \ldots, a_{k}\right)$:

- $c \leftarrow \max _{i} a_{i}$
- return $c+\log \sum_{i} \exp \left(a_{i}-c\right)$

See scipy.special.logsumexp
(Comment: log-space implementation probably not needed in HW2, probably needed in HW3.)

