Review Examples Inference: Conditioning Inference: Marginalization Review Examples Inference: Conditioning Inference: Marginalization
ole} 000000000 0000000000 00000000000 o0 000000000 0000000000 00000000000
COMPSCI 688: Probabilistic Graphical Models
Lecture 8: Undirected Graphical Models: Inference
Review
Dan Sheldon
Manning College of Information and Computer Sciences
University of Massachusetts Amherst
Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke®@cs.umass.edu)
1/33 2/33
Review Examples Inference: Conditioning Inference: Marginalization Review Examples Inference: Conditioning Inference alization
oe 000000000 Q000000000 00000000000 Qo 900000000 0000000000 Q000000
1 % P(X: %5, Xy X\I)
Markov Random Fields 2R
|
. 2 .des(Kl Ix’iﬁ(?) 'd)ﬁ‘l(*” %,
» Markov random field 1 £
p(x) = A H be(xc) | { v
\A,.,,)‘K'J ceC Xl _ %q >JY3
. ) . Examples
» Dependence graph G: where nodes i and j are connected by an edge if they appear P
together in some factor
» Ising Model: grid-structured graph, unary/pairwise potentials express local
preferences for values of z; or (z;,z;) pairs R
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Example: Statistical Image Models

The Ising model with pairwise potentials encourages smoothness and can be used as a
model for images for denoising:

original image noisy image reconstructed image
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Example: Image Denoising
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,\\/( ) 9*{3 <J_ \/ \/> Conditional Random Fields
) = T )
\/ \/) The image denoising model is one example of a conditional random fields (CRFs), a
/Y l“ very important model class in machine learning. A CRF is essentially a Markov network
where one set of_nodes is always conditioned on.
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The y nodes are labels, and the x nodes are features. v .
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Example: Bayes Nets as MRFs
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Example: Bayes Nets as MRFs

Some structure is lost in this transformation. When we replace p(alb, ¢) by ¢(a,b,c), we
“forget” that a Bayes net is locally normalized

©,

This is a special property of Bayes nets and is central to V-structures, explaining away,

and D-separation. It occurs “internally” to the factor ¢(a,b,c) and is not represented in
the MRF graph structure.

ky
> éla,bc) =1 Vb,ec

a

Similarly, when we replace [T; p(z:|Xpa(s)) by %HCGC oc(xc), we “forget” that a Bayes
net is globally normalized:

if () p(ble) =
Y Iltexe)=1 = Z=1. ~ T Pe )= |

T ceC

This is another special property of Bayes nets that makes learning easy.
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Inference in Markov Networks P&q — Q(X@)Xu, 7<E> — ZE({ ¢<(><¢> \

» Given a Markov network, the main task is probabilistic inference, which means
answering probability queries of the form

p(xolXB) = Y p(xq, xul%p)

XU

> condition on evidence variables xg;
> marginalize unobserved variables xi;
> compute the joint distribution over query variables x¢

> ...often by transforming Markov network into one with fewer or simpler factors

> Conditioning is easy
> Marginalization is hard! («-@wwo\“\/ N\)-—\nwé‘ eo\§7 ln  foue ('c<e5>
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Conditioning: Single Factor For fixed 2, the conditional p(x1|z2) is proportional to the joint p(x1,z2). We can use

the same factor, but hard-code x5 so that only x; is a free variable:
/ !
Suppose we have a single-factor MRF p(x1,22) = £é(z1,22) for two binary variables. ¢'(v1) = da1,22), 2" =p(x2)Z
We are given a fixed value for(xg) and want an MRF for p(z1|@3), i.e.:
O o © P A
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Conditioning: General Case Factor Reduction: Example
b,(Y,Y,)  Y,=0
$1(Y1,Y,) 1 2
. 7 2
For a general MRF, we can apply the same reasoning to reduce every factor by
hard-coding the evidence variables &Y, X)) X=0
Y,=0
° @ -
PaY X)) slYa X))
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Factor Reduction: Step 1

b(Yy,Y;)  Y,=0

d4(Yy)Y2) veo [ 2
Y,=1 7 2

b,(Y1,X,) X,=0
oY) dalYy) v D
= 4 1

¢3(YZIX2)
Y,=0
Y,=1

X,=0

Query: P(Y,,Y,| X;=0, X,=1)
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Factor Reduction: Step 2

(YY) Y,=0

b1(Y,Y,)

Z(Yl) 3(Y2)

Y,=0
Y,=1

Query: P(Y,,Y,| X;=0, X,=1)
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Factor Reduction: Step 2

&,(Y,Y,)  Y,=0
¢1(Y1’Y2) 't 1 2
7 2
¢’,(Y,) b’5(Y,)
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Factor Reduction: General Algorithm

Suppose p(x) = % [Tece 9c(xc) and we observe X; = x; for a single node ¢
We obtain a new MRF for p(x_;|z;) by the following procedure:

For each factor ¢, such that i € ¢

> Replace ¢.(x.) by ¢/C\Z'(xc\i) = ¢c(xc\i71'i)
> The x,\; variables remain “free”, and z; is hard-coded

To condition on many variables, we can repeat this procedure. Since order doesn't
matter, we can hard-code all evidence variables in each factor at the same time.
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Marginalization

Marginalization is the process of summing over some of the variables to get the marginal
distribution of the remaining variables, or the partition function.

n
For example, the partition function is c/ 4
L KD Ko 2

2= > I telzc)

T1 T2 Tn ceC

Naively, this takes exponential time, but we can sometimes use the factorization
structure to speed it up.
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Example: Variable Elimination on a Chain

Consider the following MRF on a four-node “chain” graph:

%¢1 (z1)P2(x2) P3(23) Pa(xa) Pr2(x1, T2) P23 (22, T3) P34(23, T4)

p(mla 1,'2,.’173,1:4) =
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Pictorially, this is how we changed the MRF
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What if we want to compute the unnormalized marginal p(x1)?

P(%) = DS dl)BLARO) OL) Gl,3) dl5,5) B, %)

Ky ¥y %LI
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= ¢, ("'\ ' V"\;_,((X,B
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What if we want to compute the actual marginal p(x1)?

Take p(x1) and normalize it

2= Y0, o) = paln)

Lesson: always normalize at the end

%y 6[”(/\) P(\ﬁA

o 3 3/30
I W (7/>o
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What if we eliminate x3 first?
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What if our graph is a star graph? 2= %% Edy‘“(nr)r;’z - Yo "T(X“’Kz)
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The Variable Elimination Algorithm

Variable elimination is an algorithm to compute any marginal distribution in any MRF

In words: pick a variable x; to eliminate, multiply together all factors containing z; to
get an intermediate factor, then sum out z;

> Let F = {¢.: c € C} be the set of factors
» For each variable ¢ in some elimination order (may not include all variables)
> Let A= {¢. € F:i € c} be the set of factors whose scope contains 7

> Let da(xa) = [14.ca Pe(xc) be the product of factors in A, with scope a equal to the
union of the scopes of the individual factors

> Let ¥i(xa\i) = >, @a(Xa\i» i) be the result of summing out x;
> Let F=F\ AU{t;}

The final set of factors forms an MRF for the marginal distribution of the variables that
were not eliminated.
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Variable Elimination Discussion

» The efficiency of variable elimination depends on the maximum size of the
intermediate factors created, which depends on the elimination ordering

> Inference in MRFs is NP-hard, so we can't always find a good elimination ordering.
> Finding the best elimination ordering for a given MRF is also NP-hard!
> It's always efficient to eliminate leaves if present (intermediate factors are no larger

than original ones)
» — for trees, we can find an efficient elimination ordering
> In fact, because the elimination ordering is predictable in trees, we can realize extra
efficiencies when answering multiple queries through a dynamic programming
approach known as message passing
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