

Review 0000	Examples 000000000000	Inference: Conditioning 000000000	Preview 00 Review 0000	Examples oooo€oooooooooo	Inference: Conditioning 000000000	Preview 00
Example: Simul	lating an Ising Mode	el	Example	e: Statistical Image Models		
	Demo: Ising M	T= temperature > T high, weak p for X:=	reference The Is in den	sing model with $b_{ij} > 0$ prefers smootosing procedures:	othness, and can be used as a mod	el for images
	$p(\mathbf{x}) =$	$\frac{\left(\frac{1}{T}\sum_{(i,j)\in E} x_i x_j\right)}{Z} = \frac{\prod_{(i,j)\in E} e^{ix_i}}{\sum_{i\in I} e^{ix_i}}$				10 / 21
Review	Examples	Inference: Conditioning	Preview Review	Examples	Inference: Conditioning	Preview
Example: Image	e Denoising					00

Review 0000	Examples 0000000000000	Inference: Conditioning 000000000	Preview Rev oo oo	iew DO	Examples 00000000000000	Inference: Conditioning	Preview 00
Example: I	Part-of-Speech Tagging						
			13 / 31				14 / 31
Review 0000	Examples 000000000000000	Inference: Conditioning	Preview OO	iew SO	Examples 000000000000000	Inference: Conditioning	Preview 00
Conditiona	al Random Fields		E	xample: Ima	ge Segmentation		
The previ	ious two examples were examples o	f conditional random fields (Cl	RFs), a very				
where one	e set of nodes is always conditione	A CRF is essentially a Markov r d on.	network	() the			
(Y ₁)-(Y	$\overline{Y_2} - (\overline{Y_3}) - (\overline{Y_4})$	(x ₁₁) (x ₁₂) (x ₁₃)					
		(Y ₁₁) (Y ₁₂) (Y ₁₃)				and to another	
				1 ALDO		and the second second	
		(γ_{31}) (γ_{32}) (γ_{33})					
The \mathbf{y} no	odes are <i>labels</i> , and the \mathbf{x} nodes are	e <i>features</i> .					

19/31

Example: Bayes Nets as MRFs

Some structure is lost in this transformation. When we replace p(a|b,c) by $\phi(a,b,c),$ we "forget" that a Bayes net is **locally normalized**

$$\sum_{a} \phi(a, b, c) = 1 \quad \forall b, c.$$

This is a special property of Bayes nets and is central to V-structures, explaining away, and D-separation. It occurs "internally" to the factor $\phi(a,b,c)$ and is not represented in the MRF graph structure.

Similarly, when we replace $\prod_i p(x_i | \mathbf{x}_{pa(i)})$ by $\frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c)$, we "forget" that a Bayes net is globally normalized:

$$\sum_{x} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c) = 1 \implies Z = 1.$$

This is another special property of Bayes nets that makes learning easy.