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Markov Random Fields

A Markov random is a distribution that factors over a set of “cliques” C:

p(x) = 1
Z

Ÿ

cœC
„c(xc), Z =

ÿ

x

Ÿ

cœC
„c(xc)

The dependence graph G = (V,E) is the graph where nodes i and j are connected by
an edge if they appear together in some factor.

We say that p(x) factors over G, and denote this property as (F).
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Markov Properties

The global Markov property (G) connects conditional indpendence to graph separation.

Distribution p(x) satisfies the global Markov property with respect to G if

sepG(A,B|S) =∆ XA ‹ XB | XS (G)

There are two other Markov properties (local and pairwise) implied by the global Markov
property.
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Factorization and Markov Properties

It’s easy to show that factorization implies Markov: (F) ∆ (G).

There is a famous partial converse. For a positive distribution: (G) ∆ (F)

Theorem (Hammersley-Cli�ord). If p(x) > 0 for all x, then (F) ≈∆ (G)
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Example: Ising Model

I G is a lattice and Xi œ {≠1, 1}
I Have unary potential —i for each node i and

pairwise potential —ij for each edge (i, j)

p(x) = 1
Z

Ÿ

i

—i(xi)
Ÿ

(i,j)œE
—ij(xi, xj)

—i(xi) = exp(bixi)
—ij(xi, xj) = exp(bijxixj)

I bi > 0 =∆ Xi likes to be positive
I bij > 0 =∆ Xi and Xj like to be the

same
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Example: Ising Model

I In general, Markov networks can be seen as
expressing preferences for certain local
configurations of the variables.

I Joint configurations with high probability
balance the preferences of all factors.
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Example: Simulating an Ising Model

Demo: Ising Model

p(x) =

exp

Q
a 1
T

ÿ

(i,j)œE
xixj

R
b

Z
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Example: Statistical Image Models

The Ising model with bij > 0 prefers smoothness, and can be used as a model for images
in denoising procedures:
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Example: Image Denoising
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Example: Part-of-Speech Tagging
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Conditional Random Fields
The previous two examples were examples of conditional random fields (CRFs), a very
important model class in machine learning. A CRF is essentially a Markov network
where one set of nodes is always conditioned on.

The y nodes are labels, and the x nodes are features.

15 / 31

Review Examples Inference: Conditioning Preview

Example: Image Segmentation

16 / 31



Review Examples Inference: Conditioning Preview

Example: 3D Mesh Segmentation
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Example: Bayes Nets as MRFs
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Example: Bayes Nets as MRFs
Some structure is lost in this transformation. When we replace p(a|b, c) by „(a, b, c), we
“forget” that a Bayes net is locally normalized

ÿ

a

„(a, b, c) = 1 ’b, c.

This is a special property of Bayes nets and is central to V-structures, explaining away,
and D-separation. It occurs “internally” to the factor „(a, b, c) and is not represented in
the MRF graph structure.

Similarly, when we replace r
i p(xi|xpa(i)) by 1

Z

r
cœC „c(xc), we “forget” that a Bayes

net is globally normalized:
ÿ

x

Ÿ

cœC
„c(xc) = 1 =∆ Z = 1.

This is another special property of Bayes nets that makes learning easy.
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