Motivation 0000	Markov Random Fields	Factorization and Markov Properties 00000000000	Motivation •000	Markov Random Fields	Factorization and Markov Properties
	COMPSCI 688: Probabilistic Graphical Mo	odels			
	Lecture 6: Undirected Graphical Models				
				Motivation	
	Dan Sheldon				
	Manning College of Information and Computer Sciences University of Massachusetts Amherst				
Based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)					
		1/22			2/22
Motivation	Markov Random Fields 00000	Factorization and Markov Properties	Motivation ○○●○	Markov Random Fields	Factorization and Markov Properties
Motivating Example			Motivating Ex	kample	
		3/22			4/22

Motivation 000

Markov Random Fields

Factorization and Markov Properties

Markov Properties for Undirected Graphical Model

Undirected graphical models are probability distributions that satisfy a set of conditional independence properties with respect to a dependence graph \mathcal{G} . Formally:

- ▶ Let $\mathcal{G} = (V, E)$ be a graph with nodes $V = \{1, \dots, n\}$
- ▶ For $A, B, S \subseteq V$, say that S separates A from B if all paths from A to B in \mathcal{G} go through S, written $sep_{\mathcal{G}}(A, B|S)$.

The joint distribution of random variables X_1, \ldots, X_n satsifes the **global Markov property** with respect to \mathcal{G} if

$$sep_G(A, B|S) \implies \mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S \tag{G}$$

What form of distribution $p(x_1, ..., x_n)$ has this property?

5 / 22

Factorization and Markov Properties Markov Random Fields

Markov Random Fields

6/22

Factorization and Markov Properties

Motivation

Markov Random Fields

Factorization and Markov Properties

Warmup: Characterization of Conditional Independence

Recall the definition of conditional independence

$$\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z} \iff p(\mathbf{x}, \mathbf{y} | \mathbf{z}) = p(\mathbf{x} | \mathbf{z}) p(\mathbf{y} | \mathbf{z})$$

Today we'll use two other properties of conditional independence:

1.
$$\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z} \iff p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \phi_1(\mathbf{x}, \mathbf{z})\phi_2(\mathbf{y}, \mathbf{z})$$
 for some ϕ_1, ϕ_2
2. $\mathbf{X} \perp (\mathbf{Y}, \mathbf{W}) \mid \mathbf{Z} \implies \mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$

Proofs: exercise

Note: (1) says that conditional independence holds iff the joint distribution factorizes in a certain way, which is very important.

Markov Random Field Example

Example: $p(x_1, x_2, x_3, x_4) = \phi_{12}(x_1, x_2)\phi_{23}(x_2, x_3)\phi_{34}(x_3, x_4)\phi_{14}(x_1, x_4)$

Markov Random Fields

8/22

Motivation 0000 Markov Random Fields 000●00 Factorization and Markov Properties

Markov Random Fields 0000●0 Factorization and Markov Properties

Markov Random Fields

A Markov random field is a probability distribution that factorizes over a set of "cliques" \mathcal{C} :

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c), \quad Z = \sum_{\mathbf{x}} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c)$$

- ▶ Each $c \subseteq V = \{1, ..., n\}$ is a set of indices, or "clique"
- ▶ The function ϕ_c is a non-negative factor or potential. It only depends on x_i for $i \in c$. We say it has $scope\ c$ and define $Scope(\phi_c) := c$
- ightharpoonup Z is the normalizing constant or "partition function"

9 / 22

Concrete Example

10 / 22

Motivation

Markov Random Fields 00000● Factorization and Markov Properties 0000000000

Dependence Graph

The dependence graph $\mathcal{G}=(V,E)$ of the MRF $p(\mathbf{x})=\frac{1}{Z}\prod_{c\in\mathcal{C}}\phi_c(\mathbf{x}_c)$ is the graph where nodes i and j are connected by an edge if they appear together in some factor:

$$V = \{1, \dots, n\}, \quad E = \{(i, j) : i \in c \text{ and } j \in c \text{ for some } c \in \mathcal{C}\}$$

With this definition, every $c \in \mathcal{C}$ is a clique (fully connected set) in \mathcal{G} .

Factorization and Markov Properties

11 / 22

Motivation 0000 Markov Random Fields

Factorization and Markov Properties

000

Markov Random Fields

Factorization and Markov Properties

Factorization

Let \mathcal{G} be a graph. A distribution $p(\mathbf{x})$ factorizes with respect to \mathcal{G} if

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c), \quad \mathcal{C} = \mathsf{cliques}(\mathcal{G}) \tag{F}$$

In other words, it is an MRF with dependence graph \mathcal{G} .

As in Bayes nets, there is a close relationship between factorization and Markov properties obtained from graph separation.

Markov Properties

The global Markov property (G), the local Markov Property (L) and pairwise Markov property (P) are three different properties of a distribution that hold relative to a graph G.

$$sep_{\mathcal{G}}(A, B|S) \implies \mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S \tag{G}$$

$$i \in V \implies X_i \perp \mathbf{X}_{V \setminus (\mathsf{nb}(i) \cup \{i\})} \mid \mathbf{X}_{\mathsf{nb}(i)}$$
 (L)

$$(i,j) \notin E \implies X_i \perp X_j \mid \mathbf{X}_{V \setminus \{i,j\}}$$
 (P)

Above, nb(i) is the set of neighbors of node i in G.

Claim: $(G) \Rightarrow (L) \Rightarrow (P)$

It's easy to see (G) \Rightarrow (L) and (G) \Rightarrow (P) by taking the appropriate choices of A, B, S. We leave (L) \Rightarrow (P) as an exercise.

14 / 22

Markov Random Fields

Factorization and Markov Properties

13 / 22

Markov Random Fields

Factorization and Markov Properties

Markov Property Examples

Markov Property Examples

15 / 22

 Motivation
 Markov Random Fields
 Factorization and Markov Properties

 0000
 0000●00000

Factorization Implies Markov

Like in Bayes nets, factorization implies conditional independencies (Markov properties).

Claim: $(F) \Rightarrow (G) \Rightarrow (L) \Rightarrow (P)$

Proof ("by example"): We only need to show $(F) \Rightarrow (G)$.

Factorization Implies Markov Proof

18 / 22

17 / 22

Motivation

Markov Random Fields

Factorization and Markov Properties

Factorization Implies Markov Proof

Suppose $p(\mathbf{x}) = \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c)$ (assume 1/Z is included in one of the factors) and $\sup_{\mathcal{G}}(A,B;S)$. We'll show that $\mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S$.

First, remove S from $\mathcal G.$ The resulting graph is disconnected and has no paths from A to B

- \blacktriangleright Let \tilde{A} be the union of all connected components containing a node from A
- $\blacktriangleright \ \operatorname{Let} \, \tilde{B} = V \setminus \tilde{A}$

Then each $c \in \mathcal{C}$ is a subset of either $\tilde{A} \cup S$ or $\tilde{B} \cup S$

- ▶ Let C_A be the cliques contained in $\tilde{A} \cup S$
- ▶ Let \mathcal{C}_B be the cliques contained in $\tilde{B} \cup S$

20 / 22

Then

$$\begin{aligned} p(\mathbf{x}) &= \prod_{c \in \mathcal{C}_A} \phi_c(\mathbf{x}_c) \prod_{c \in \mathcal{C}_B} \phi_c(\mathbf{x}_c) = h(\mathbf{x}_{\tilde{A}}, \mathbf{x}_S) k(\mathbf{x}_{\tilde{B}}, \mathbf{x}_S) \\ &\implies \mathbf{X}_{\tilde{A}} \perp \mathbf{X}_{\tilde{B}} \mid \mathbf{X}_S \\ &\iff (\mathbf{X}_A, \mathbf{X}_{\tilde{A} \setminus A}) \perp (\mathbf{X}_B, \mathbf{X}_{\tilde{B} \setminus B}) \mid \mathbf{X}_S \\ &\implies \mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S \end{aligned}$$

Markov Implies Factorization: Hammersley-Clifford Theorem

There is a famous partial converse. For a *positive* distribution, (P) \Rightarrow (F), which implies all the conditions are equivalent:

Theorem (Hammersley-Clifford). If $p(\mathbf{x}) > 0$ for all \mathbf{x} , then

$$(F) \iff (G) \iff (L) \iff (P).$$

The theorem holds for a very general class of distributions, e.g., ones with continuous, discrete, or both types of random variables.

21 / 22