

Motivation		Factorization and Markov Properties

Markov Properties for Undirected Graphical Model
Undirected graphical models are probability distributions that satisfy a set of conditional independence properties with respect to a dependence graph \mathcal{G}. Formally:

- Let $\mathcal{G}=(V, E)$ be a graph with nodes $V=\{1, \ldots, n\}$
- For $A, B, S \subseteq V$, say that S separates A from B if all paths from A to B in \mathcal{G} go through S, written $\operatorname{sep}_{\mathcal{G}}(A, B \mid S)$.
The joint distribution of random variables X_{1}, \ldots, X_{n} satsifes the global Markov property with respect to \mathcal{G} if

$$
\begin{equation*}
\operatorname{sep}_{\mathcal{G}}(A, B \mid S) \Longrightarrow \mathbf{X}_{A} \perp \mathbf{X}_{B} \mid \mathbf{X}_{S} \tag{G}
\end{equation*}
$$

What form of distribution $p\left(x_{1}, \ldots, x_{n}\right)$ has this property?

Motivation ocoo	Markov Random Fields 0.0000

Warmup: Characterization of Conditional Independence

Recall the definition of conditional independence

$$
\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y} \mid \mathbf{z})=p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{y} \mid \mathbf{z})
$$

Today we'll use two other properties of conditional independence:

1. $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z})=\phi_{1}(\mathbf{x}, \mathbf{z}) \phi_{2}(\mathbf{y}, \mathbf{z})$ for some ϕ_{1}, ϕ_{2}
2. $\mathbf{X} \perp(\mathbf{Y}, \mathbf{W})|\mathbf{Z} \Longrightarrow \mathbf{X} \perp \mathbf{Y}| \mathbf{Z}$

Proofs: exercise
Note: (1) says that conditional independence holds iff the joint distribution factorizes in a certain way, which is very important.

$\begin{array}{l}\text { Mootivation } \\ \text { cooo }\end{array}$	$\begin{array}{l}\text { Markov Random Fields } \\ \text { •OOOOO }\end{array}$

Factorizition and Markov Properties
مocoocooiocoon

Markov Random Fields

Markov Random Field Example
Example: $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\phi_{12}\left(x_{1}, x_{2}\right) \phi_{23}\left(x_{2}, x_{3}\right) \phi_{34}\left(x_{3}, x_{4}\right) \phi_{14}\left(x_{1}, x_{4}\right)$

$\begin{aligned} & \hline \text { Motivation } \\ & \text { Moove } \end{aligned}$		$\begin{aligned} & \text { Motivation } \\ & \text { Ooove } \end{aligned}$	Markov Random Fields Mocoos	Fatorization and Markov Proeerites
Markov Property Examples		Markov Property Examples		

Matasation	Mataoco fandem Filids	
Then	$\begin{aligned} & p(\mathbf{x})=\prod_{c \in \mathcal{C}_{A}} \phi_{c}\left(\mathbf{x}_{c}\right) \prod_{c \in \mathcal{C}_{B}} \phi_{c}\left(\mathbf{x}_{c}\right)=h\left(\mathbf{x}_{\tilde{A}}, \mathbf{x}_{S}\right) k\left(\mathbf{x}_{\tilde{B}}, \mathbf{x}_{S}\right) \\ & \Longrightarrow \mathbf{x}_{\tilde{A}} \perp \mathbf{X}_{\tilde{B}} \mid \mathbf{X}_{S} \\ & \Leftrightarrow\left(\mathbf{X}_{A}, \mathbf{X}_{\tilde{A} \backslash A}\right) \perp\left(\mathbf{X}_{B}, \mathbf{X}_{\tilde{B} \backslash B}\right) \mid \mathbf{X}_{S} \\ & \Longrightarrow \mathbf{X}_{A} \perp \mathbf{X}_{B} \mid \mathbf{x}_{S} \end{aligned}$	

Markov Implies Factorization: Hammersley-Clifford Theorem

There is a famous partial converse. For a positive distribution, $(P) \Rightarrow(F)$, which implies all the conditions are equivalent:
Theorem (Hammersley-Clifford). If $p(\mathbf{x})>0$ for all \mathbf{x}, then

$$
(\mathrm{F}) \Longleftrightarrow(\mathrm{G}) \Longleftrightarrow(\mathrm{L}) \Longleftrightarrow(\mathrm{P})
$$

The theorem holds for a very general class of distributions, e.g., ones with continuous, discrete, or both types of random variables.

