

Motivation 0000	Markov Random Fields 000000	Factorization and Markov Properties 0€00000000	Motivation 0000	Markov Random Fields	Factorization and Markov Properties
Factorization			Markov Properties		
Let ${\mathcal G}$ be a graph. A	distribution $p(\mathbf{x})$ factorizes wit	h respect to ${\cal G}$ if	The global Markov pr	roperty (G), the local Markov Property (L)	and <i>pairwise Markov</i>
In other words, it is a As in Bayes nets, the properties obtained f	$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c), \mathcal{C} =$ an MRF with dependence graphere is a close relationship between from graph separation.	$cliques(\mathcal{G}) \qquad (F)$ in \mathcal{G} . en factorization and Markov $\zeta_{\gamma} = \phi_{(23)}(\chi_{\gamma}\chi_{3},\chi_{3})\phi_{23\gamma}(\chi_{\gamma}\chi_{3},\chi_{\gamma})$	property (P) are three \mathcal{G} . So \mathcal{G} . Above, $nb(i)$ is the set Claim : (G) \Rightarrow (L) \Rightarrow It's easy to see (G) \Rightarrow We leave (L) \Rightarrow (P) is	e different properties of a distribution that $ep_{\mathcal{G}}(A, B S) \Longrightarrow \mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S$ $i \in V \Longrightarrow X_i \perp \mathbf{X}_{V \setminus (nb(i) \cup \{i\})} \mid \mathbf{X}_r$ $(i, j) \notin E \Longrightarrow X_i \perp X_j \mid \mathbf{X}_{V \setminus \{i, j\}}$ et of neighbors of node i in \mathcal{G} . $e (P)$ (L) and $(G) \Rightarrow (P)$ by taking the approprias an exercise.	hold relative to a graph (G) (b) (b) (b) (P) iate choices of A, B, S.
		13/22			14 / 22
Motivation 0000	Markov Random Fields 000000	Factorization and Markov Properties	Motivation 0000	Markov Random Fields 000000	Factorization and Markov Properties
Markov Property Ex	xamples		Markov Property Ex	amples	

Motivation 0000	Markov Random Fields 000000	Factorization and Markov Properties	Motivation 0000	Markov Random Fields 000000	Factorization and Markov Properties
Factorization Implies Markov			Factorization Implies Markov Proof		
Like in Bayes	nets, factorization implies conditional indep	endencies (Markov properties).			
Claim: (F) ⇒	$ ightarrow$ (G) \Rightarrow (L) \Rightarrow (P)				
Proof ("by ex	xample"): We only need to show (F) \Rightarrow (G).			
Assume ($F), \rho(x) = \frac{1}{2} \cdot \phi_{133}(x_1 x_2 x_3) \cdot \phi_{33}$	$(x_{x_{y}}, x_{y}) \cdot \phi_{4\varepsilon}(x_{y}, x_{y})$			
G Q	$ \begin{array}{c} \hline \\ \hline $	$(\mathbf{x},\mathbf{x},\mathbf{x},\mathbf{x},\mathbf{x})$			
Assume	$ () \qquad \Rightarrow X, \bot \\ sep(A, B s) \rightarrow X_{a} \downarrow) $	$\begin{array}{c} (x_{2}, x_{3}) \\ (x_{2}, x_{3}, x_{3}) \\ (x_{2}, x_{3}) \\ (x_{3}, x_{3}) \end{array}$			
		17/22			18 / 22
Motivation 0000	Markov Random Fields 000000	Factorization and Markov Properties	Motivation 0000	Markov Random Fields 000000	Factorization and Markov Properties
			Factorization	Implies Markov Proof	
			Suppose $p(\mathbf{x}) = \prod_{c \in \mathcal{C}} \phi_c(\mathbf{x}_c)$ (assume $1/Z$ is included in one of the factors) and $\operatorname{sep}_{\mathcal{G}}(A, B; S)$. We'll show that $\mathbf{X}_A \perp \mathbf{X}_B \mid \mathbf{X}_S$. First, remove S from \mathcal{G} . The resulting graph is disconnected and has no paths from A to B • Let \tilde{A} be the union of all connected components containing a node from A • Let $\tilde{B} = V \setminus \tilde{A}$		
			Then each $c \in \mathcal{C}$ is a subset of either $ ilde{A} \cup S$ or $ ilde{B} \cup S$		
			• Let C_A be the cliques contained in $\tilde{A} \cup S$ • Let C_B be the cliques contained in $\tilde{B} \cup S$		

