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Markov Properties for Undirected Graphical Model — wadtccted

Undirected graphical models are probability distributions that saésfy a set of conditional
independence properties with respect to a dependence graph G. Formally:

> Let G = (V, E) be a graph with nodes V = {1,...,n}
» For A,B,S CV, say that S separates A from B if all paths from A to B in G go
th h S, writt A, BI|S).
rougl written sepg |S) P(*,J...,*n)

The joint distribution of random variables X7, ..., X, satsifes the global Markov
property with respect to G if

Sepg(A,B‘S) = X4 1L Xp | Xs (G)
What form of distribution p(x1,...,x,) has this property?
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Warmup: Characterization of Conditional Independence Markov Random Field Example
)
Gx2) Psly2) Example: p(z1, 22,23, 24) = @1, 72)b23 (02, 03) d34 (w3, 24) dra (w1, 4) Zz
Recall the definition of conditional independence ,~wn
Py, =) = PO o= G re (
X LY |Z < p(x,ylz) = p(x|z)p(y|z) (a) \—f«® ¥, ¥, Xs) 9 ’%’“J*’)
’Z“(“‘/\Fﬂ\
Today we'll use two oth ties of conditional independence: .;_F
oday we'll use two other properties of conditional independence (b(q d?x-g ( ;‘:/ﬂ 3(u 7(‘7/) |
LX LY |Z = plx,y.2) = 61(x,2)0(y.2) for some 61,62 (b) definibon <f
2 X1 (Y W)|Z = X_LY|Z ¢t Frem
—/—\Q = } X v
Proofs: exercise @ - \Kx .L %‘f X(, 3 pee slde,
Note: (1) says that conditional independence holds iff the joint distribution factorizes in
a certain way, which is very important. no B““'{"g net — 7<{ L 5(5 / Xi) Y'7 (g‘f "\fw"‘”"ﬁ\/
I I Lhak ot sftes
dnese Cls
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& (% _
('C‘:%l‘a}% XC.; (X()*>)X3> Z.o/ % %’) 33 | i', 3, 3%} %3)’#3%

A Markov random field is a prob}bﬂi—t@tion that factorizes over a set of “cliques”

C: normal(2ahon

p(x) = % H ¢c(XC), 7 = Z H ¢c(xc) (ondTany

Concrete Example é: Ci%'/ﬁ T 3{} X'é%O) }g
[ S
Pl %0, %3) = 2 Pual%, 1) Ba (75, %5)
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IR b N ?5>5 P (K,/ %’/\L;)
K Yy G ?<,L Ya 013 ——
’_C)o\— @) o O [ ] = \/[K
cec X ceC o o | ! o o | (=1 /g
N Scone ()= o | 2 o | | o 1 O =2 o
> Each ¢ CV ={1,...,n} is a set of indices, or “clique” 'P(K//¥S‘) #j 2"% . ) 2 /(g
» The function ¢, is a non-negative factor or potential. It only depends on z; for ' ! o | o ( o=y ‘(
i € ¢. We say it has scope ¢ and define Scope(¢.) := ¢ [ ( 2 | [ 2 [ 0O O 21 =2 ‘
» 7 is the normalizing constant or “partition function” | © | 9.le2 .
1 o al=2
[ 24 N
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Dependence Graph

The dependence graph G = (V, E) of the MRF p(x) = %Hcec ¢dc(xc) is the graph
where nodes ¢ and j are connected by an edge if they appear together in some factor:

V={1,....,n}, E={(i,j):i€candjecforsomeceC}

With this definition, every ¢ € C is a clique (fully connected set) in G.

L
P(XUY‘/%’/X?) S—dZL(‘Xr/S(;) d)(;;(’%X:, x3> ¢?q<x3/xf’> 2

@ Q123
( @ ?[/3/3%

63,43
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Factorization

Let G be a graph. A distribution p(x) factorizes with respect to G if

p(x) = % 1;[C¢E(xu), ¢ = cliques(G) (F)

In other words, it is an MRF with dependence graph G.

As in Bayes nets, there is a close relationship between factorization and Markov
properties obtained from graph separation.

PO, s >: P (%2900 (43,9)
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Markov Properties
A
The global Markov property (G), the local Markov Property (L) and pairwise Markov

property (P) are three different properties of a distribution that hold relative to a graph
g.

v\el/wvxe.lﬂkh"fg
sepg(A, B|S) = X4 L Xp | Xg (G)
i€V = Xi LXy\(mb(i)ufip) | Xnbii) )
(i,)) ¢ B = Xi L Xj [ Xy\(ijy )

Above, nb(i) is the set of neighbors of node i in G.
Claim: (G) = (L) = (P)

It's easy to see (G) = (L) and (G) = (P) by taking the appropriate choices of A, B, S.
We leave (L) = (P) as an exercise.
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Factorization Implies Markov
Like in Bayes nets, factorization implies conditional independencies (Markov properties).
Claim: (F) = (G) = (L) = (P)
Proof (“by example”): We onIy need to show (F) = (G).

Adsume (F—) ()(y) 2 cfz,a@*&n@) dJ»L[\K:XaX, @4:(&@

. - !@ (e BR) BB, <)
S = L (% %) [ %5, %s
= 5( L \K§ (\(1,\(3 )
Assume  5ep /MB]S) = Yl X [ %5
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Factorization Implies Markov Proof

Suppose p(x) = [[.cc ¢e(xc) (assume 1/Z is included in one of the factors) and
sepg(A, B; S). We'll show that X4 1 Xp | Xg.

First, remove S from G. The resulting graph is disconnected and has no paths from A
to B

» Let A be the union of all connected components containing a node from A
» Let B=V\ A

Then each ¢ € C is a subset of either AUS or BU S

> Let C4 be the cliques contained in fi us
> Let Cp be the cliques contained in BU S
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p(x) = H Pe(Xe) H be(xc) = h(x4,x5)k(x5,%5)

ceCa ceCp
= X,; L X Xg
= (Xa,Xz4) L X, Xpp) | Xs
— X4 LXp|Xg
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Markov Implies Factorization: Hammersley-Clifford Theorem

(F) = (G) ::()(L;_} = (p)

There is a famous partial co
all the conditions are equivalent:

istribution, (P) = (F), which implies

Theorem (Hammersley-Clifford). If p(x) > 0 for all x, then

(F) <= (6) = (L) < (P).

The theorem holds for a very general class of distributions, e.g., ones with continuous,
discrete, or both types of random variables.
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