

${ }_{\substack{\text { Bay } \\ \text { Bresian Networks }}}^{\text {Conditional Independence and Factorization }}$	
Conditional Independence and Factorization	
We ass have to	
Claim:	
$\begin{aligned} & -\mathrm{RH} \\ & \text { its } \end{aligned}$	
5/13	

| Bayysian Networks |
| :---: | :---: |
| of |

${ }^{\text {Bayecsian Networks }}$
Conditional Independence Implies Factorization

```
Assume }\mp@subsup{X}{i}{}\perp\mp@subsup{\mathbf{X}}{\textrm{nd}(i)}{}|\mp@subsup{\mathbf{X}}{\textrm{pa}(i)}{}\mathrm{ for all }
```

$\bigcirc \substack{\text { Bayesian Networks } \\ \bigcirc \bigcirc \bigcirc}$	Conditional Independence and Factorization $0000 \bullet 00000$
Review of Argument	
0. Assume $X_{i} \perp \mathbf{X}_{\mathrm{nd}(i)} \mid \mathbf{X}_{\mathrm{pa}(i)}$ for all i	
1. Number nodes according to a topological ordering: $i \rightarrow j=$ also have that $\operatorname{de}(i) \subseteq\{i+1, \ldots, n\}$, and, as a consequence $\{1, \ldots, i-1\}$ are non-descendants 2. Use the chain rule	$\Rightarrow i<j$. Then we all nodes in
$p(\mathbf{x})=\prod_{i=1}^{N} p\left(x_{i} \mid \mathbf{x}_{\{1, \ldots, i-1\}}\right)$	
3. Split into parents and other non-descendants	
$p(\mathbf{x})=\prod^{N} p\left(x_{i} \mid \mathbf{x}_{\mathrm{pa}(i)}, \mathbf{x}_{\{1, \ldots, i-1\} \mathrm{pa}(i)}\right)$	
4. Simplify using conditional independence	
$p(\mathbf{x})=\prod^{N} p\left(x_{i} \mid \mathbf{x}_{\mathrm{pa}(i)}\right)$	
	8/

Bayesian Networksهo \quadConditional Independence and Factorization OOOOOO	
Factorization Implies Conditional Independence	
To show Warm	To show this, first we'll argue that marginalizing descendants in a Bayes net is easy: Warmup: suppose j is a node with no children in a Bayes net (a "leaf"). Then
In words: can marginalize x_{j} by dropping factor $p\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)$ to get a Bayes net with one less node.	
	9/13

Marginalizing a Set of Descendants

Lemma: suppose A and B partition the nodes of a Bayes net and there is no path from B to A. Then

$$
p\left(\mathbf{x}_{A}\right)=\sum_{\mathbf{x}_{B}} p\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\prod_{i \in A} p\left(x_{i} \mid \mathbf{x}_{\mathrm{pa}(i)}\right)
$$

Proof idea: at least one node in B is a leaf. Eliminate it using the warmup lemma and then repeat.

Bayesian Networks
\circ
Conditional Independence and Factorization
$000000 \bullet \bigcirc 00$

Proof:

$$
\begin{aligned}
p\left(\mathbf{x}_{-j}\right) & =\sum_{x_{j}} p\left(\mathbf{x}_{-j}, x_{j}\right) \\
& =\sum_{x_{j}} p\left(x_{j} \mid \mathbf{x}_{\mathrm{pa}(j)}\right) \prod_{i \neq j} p\left(x_{i} \mid \mathbf{x}_{\mathrm{pa}(i)}\right) \\
& =\prod_{i \neq j} p\left(x_{i} \mid \mathbf{x}_{\mathrm{pa}(i)}\right) \cdot \underbrace{\sum_{x_{j}} p\left(x_{j} \mid \mathbf{x}_{\mathrm{pa}(j)}\right)}_{1}
\end{aligned}
$$

Pushing the sum inside in the last line is possible because j is a leaf.

Factorization Implies Conditional Independence
Assume $p(\mathbf{x})=\prod_{i=1}^{N} p\left(x_{i} \mid \mathbf{x}_{\mathrm{pa}(i)}\right)$. Then for any i

$$
\begin{aligned}
p\left(x_{i} \mid \mathbf{x}_{\mathrm{nd}(i)}\right) & =\frac{p\left(x_{i}, \mathbf{x}_{\mathrm{nd}(i)}\right)}{p\left(\mathbf{x}_{\mathrm{nd}(i)}\right)} \\
& =\frac{p\left(x_{i} \mid \mathbf{x}_{\mathrm{pa}(i)}\right) \cdot \prod_{j \in \mathrm{nd}(i)} p\left(x_{j} \mid \mathbf{x}_{\mathrm{pa}(j)}\right)}{\prod_{j \in \mathrm{nd}(i)} p\left(x_{j} \mid \mathbf{x}_{\mathrm{pa}(j)}\right)} \text { Use lemma twice } \\
& =p\left(x_{i} \mid \mathbf{x}_{\mathrm{pa}(i)}\right)
\end{aligned}
$$

This demonstrates that $X_{i} \perp \mathbf{X}_{\mathrm{nd}(i)} \mid \mathbf{X}_{\mathrm{pa}(i)}$ for all i.

${ }_{\text {gagmseman }}$	

