Bayesian Networks oo	Conditional Independence and Factorization	Bayesian Networks		Conditional Independence and Factorization
COMPSCI 688: Probabi Lecture 3: Directed	-			
Lecture 5. Directed	Graphical Models			
Dan Sh	neldon		Bayesian Networks	
Manning College of Informat	tion and Computer Sciences			
University of Massa				
Partially based on materials by Benjamin M. Marlin (marlin@	@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)			
	1/13			2/13
Bayesian Networks ⊙●	Conditional Independence and Factorization	Bayesian Networks 00		Conditional Independence and Factorization •000000000
Review				
Conditional independence				
$\mathbf{X} \bot \mathbf{Y} \mathbf{Z} \iff p(\mathbf{y}, \mathbf{x} \mathbf{z}) = p(\mathbf{x} \mathbf{z}) p(\mathbf{y} \mathbf{z})$		Conditional Index and an open of Fosteria stick		
$\iff p(\mathbf{x} \mathbf{y},\mathbf{z}) = p(\mathbf{x} \mathbf{z})$		Conditional Independence and Factorization		
Directed acyclic graph (DAG) G: paren	ts children descendants non-descendants			
Bayes net: distribution is factorized Factorized				
	ch variable i "only depends on" it's parents			
	ch variable i "only depends on" it's parents			
	ch variable i "only depends on" it's parents			

Bayesian Networks Conditional Independence and Factorization 000000000	Bayesian Networks 00 Conditional Independence and Factorization
Conditional Independence and Factorization	Conditional Independence Implies Factorization
We assumed factorization in a Bayes net: $p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i \mid \mathbf{x}_{pa(i)})$. What does this have to do with conditional independence?	Assume $X_i \perp \mathbf{X}_{nd(i)} \mid \mathbf{X}_{pa(i)}$ for all i
Claim: for a probability distribution $p(\mathbf{x})$	
$p(\mathbf{x}) = \prod_{i=1}^N p(x_i \mid \mathbf{x}_{pa(i)}) \Longleftrightarrow X_i \perp \mathbf{X}_{nd(i)} \mid \mathbf{X}_{pa(i)} \text{ for all } i$	
factorization \iff conditional independence	
RHS in words: X _i is conditionally independent of its non-descendants given its parents	
5/13	6/13
Bayesian Networks Conditional Independence and Factorization	Bayesian Networks 00 Conditional Independence and Factorization
	$\begin{array}{ c c c } \hline \textbf{Review of Argument} \\ \hline \textbf{0}. \ \text{Assume } X_i \perp \textbf{X}_{nd(i)} \mid \textbf{X}_{pa(i)} \ \text{for all } i \\ \hline \textbf{1}. \ \text{Number nodes according to a topological ordering: } i \rightarrow j \implies i < j. \ \text{Then we} \\ \hline \textbf{also have that } de(i) \subseteq \{i+1,\ldots,n\}, \ \text{and, as a consequence all nodes in} \\ \hline \{1,\ldots,i-1\} \ \text{are non-descendants} \\ \hline \textbf{2}. \ \text{Use the chain rule} \\ \hline p(\textbf{x}) = \prod_{i=1}^N p(x_i \textbf{x}_{\{1,\ldots,i-1\}}) \\ \hline \textbf{3}. \ \text{Split into parents and other non-descendants} \\ \hline p(\textbf{x}) = \prod_{i=1}^N p(x_i \textbf{x}_{pa(i)}, \textbf{x}_{\{1,\ldots,i-1\} \ pa(i)}) \end{array}$
7/13	4. Simplify using conditional independence $p(\mathbf{x}) = \prod_{i=1}^N p(x_i \mathbf{x}_{pa(i)})$

Bayesian Networks 00	Conditional Independence and Factorization 00000000●
	13/13