
CS 335: Clustering and Mixture of Gaussians
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I Suppose you are given feature
vectors x(1), . . .x(m) ∈ Rn, and you
believe they come from multiple
different classes, but you don’t have
access to class labels

Clustering

−2 0 2

−2

0

2

[Bishop Pattern Recognition and Machine
Learning]

I Clustering: automatically assign
data points in n dimensions to
clusters (classes)

I Optionally find cluster
representatives

K-Means Clustering

Given
I Feature vectors x(1), . . .x(m) ∈ Rn

I Desired number of clusters k

Find
I Cluster labels c(i) ∈ {1, 2, . . . , k}
I Cluster centers µ1, . . . , µk ∈ Rn

What approach? Cost function! Minimize

J(c, µ) =
m∑

i=1
||x(i) − µc(i) ||2

K-Means Algorithm

1. Initialize µ1, µ2, . . . , µk ∈ Rn randomly

2. Repeat until convergence
I For all points i, assign x(i) to closest cluster center

c(i) ← argminj ||x(i) − µj ||2

I For all clusters j, set µj = average of currently assigned points

µj ←
∑m

i=1 1{c(i) = j}x(i)
∑m

i=1 1{c(i) = j}

K-Means Example

Initialize cluster centers arbitrarily:
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K-Means Example

Assign points:

(b)
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K-Means Example

Update centers:

(c)
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K-Means Example

Assign points:
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K-Means Example

Update centers:

(e)
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K-Means Example

Assign points:
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K-Means Example

Update centers:
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K-Means Example

Assign points:
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K-Means Example

Update centers:

(i)
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K-Means Convergence

J(c, µ) =
m∑

i=1
||x(i) − µc(i) ||2

Not hard to show that

1. µ updates minimize J while holding c fixed

2. c updates minimize J while holding µ fixed

3. The algorithm converges

“Soft” clustering

Often desirable to fractionally assign points to clusters
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“Soft” clustering

There’s something Bayesian happening here. . .

“Generative” Probabilistic Model: Mixture of Gaussians

I First choose cluster: p(c(i) = j) = φj

I Then generate x(i) from conditional distribution p(x(i) | c(i))
I Hide cluster assignments

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

p(x(i) | c(i) = k) follows a Gaussian distribution with parameters
µk and Σk



Aside: Multivariate Gaussian Distribution

p(x; µ,Σ) = 1
(2π)n/2|Σ|1/2 exp

(
− 1

2(x− µ)T Σ−1(x− µ)
)

Describes random vector x ∈ Rn with
I Mean vector µ ∈ Rn

I Covariance matrix Σ ∈ Rn×n

I P (x ∈ A) =
∫

A
p(x; µ,Σ)dx

Examples

Mixture of Gaussians Problem

Given feature vectors x(1), . . . ,x(m), number of “clusters” k
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Find
I Cluster priors φj = p(c = j)
I Gaussian parameters µj and Σj for each cluster
I Soft cluster assignments p(c(i) = j|x(i))

Mixture of Gaussians Algorithm

Initialize all φj , µj , Σj

Repeat until convergence

1. Compute posterior probability that x(i) comes from cluster j

w
(i)
j = p(c(i) = j |x(i))

= φj · p(x(i) | c(i) = j)
∑k

l=1 φl · p(x(i) | c(i) = l)
(Bayes rule)

2. Update parameters φj , µj , Σj using w(i)
j values as weights

Update Parameters

φj = average weight assigned to class j
µj = weighted mean for class j
Σj = weighted covariance for class j

φj = 1
m

m∑

i=1
w

(i)
j

µj =
∑m

i=1w
(i)
j x(i)

∑m
i=1w

(i)
j

Σj =
∑m

i=1w
(i)
j

∑m
i=1(x(i) − µj)(x(i) − µj)T

∑m
i=1w

(i)
j

Mixture of Gaussians

Initialize cluster parameters:
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Mixture of Gaussians

Update soft assignments:
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Mixture of Gaussians

Update cluster parameters:

(c)

L = 1

−2 0 2

−2

0

2

[Bishop Pattern Recognition and Machine Learning]

Mixture of Gaussians

Next iteration:

(d)
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Mixture of Gaussians

And so on:

(e)
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Mixture of Gaussians Convergence

I This algorithm converges
I Can be formally justified as an instance of the Expectation

Maximization (EM) algorithm
I For your next ML class!


