CS 335: Probabiilty Review, Bayesian Reasonsing, Naive Bayes Dan Sheldon	Probability Review
$\begin{tabular}{ c c c c c } \hline Motivation \\ \hline \underline{Age & College? & Vote? & probability \\ \hline <30 & no & no & 0.25 \\ & yes & 0.03 \\ & yes & no & 0.04 \\ & yes & 0.02 \\ \geq 30 & no & no & 0.33 \\ & yes & 0.10 \\ & yes & 0.10 \\ & yes & 0.13 \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Probability Space
$\label{eq:second} \hline \begin{array}{ c c c c } \hline \mbox{Events} \\ \hline \hline & \underline{Age College? Vote? P(\omega)} \\ \hline & \omega_1 & < 30 no no 0.25 \\ \hline & \omega_2 & & & & & & & & & & & & & & & & & & &$	$\label{eq:second} \hline \begin{array}{ c c c c c } \hline Events \\ \hline \hline & Age & College? & Vote? & P(\omega) \\ \hline & \omega_1 & < 30 & no & no & 0.25 \\ & \omega_2 & & yes & 0.03 \\ & \omega_3 & yes & no & 0.04 \\ & \omega_4 & & yes & 0.02 \\ & \omega_5 & \geq 30 & no & no & 0.33 \\ & \omega_6 & & yes & 0.10 \\ & \omega_7 & yes & no & 0.10 \\ & \omega_8 & & yes & 0.13 \end{array} $ Events are the only things that have probabilities Seemingly informal statements like $P(\leq 30), P(\leq 30 \text{ and voted})$ are made precise by interpreting the phrases inside $P(\cdot)$ as events $\omega_7 & yes & no & 0.10 \\ & \omega_8 & yes & 0.13 \end{array}$ How would you formalize $P(1 \text{ will get a haircut tomorrow})?$
Joint and Conditional ProbabilityAgeCollege?Vote? $P(\omega)$	Joint and Conditional Probability

Calculation	
Observe HHTHT. What is probability coin is biased? $P({\sf fair})=P({\sf biased})=\frac{1}{2}$ $P({\sf HHTHT} {\sf fair})=\left(\frac{1}{2}\right)^5$	Bayesian Classification and Naive Bayes
$\begin{split} P(HHTHT biased) &= \left(\frac{3}{4}\right)^3 \left(\frac{1}{4}\right)^2 \\ P(biased HHTHT) &= \\ \hline P(biased)P(HHTHT biased) \\ \hline P(biased)P(HHTHT biased) + P(fair)P(HHTHT fair) \\ &= \frac{\frac{1}{2} \cdot \left(\frac{3}{4}\right)^3 \left(\frac{1}{4}\right)^2}{\frac{1}{2} \cdot \left(\frac{3}{4}\right)^3 \left(\frac{1}{4}\right)^2 + \frac{1}{2} \cdot \left(\frac{1}{2}\right)^5} \end{split}$	
Bayesian Classifiers	Census Example $\frac{\text{Age College? Vote? } P(\omega)}{\omega_1 < 30 \text{ no no } 0.25}$
Observe vector of features ${f x}$ Predict class $y\in\{0,1,\ldots,C\}$ with highest probability given features	$ \begin{vmatrix} \omega_2 \\ \omega_3 \\ \omega_4 \\ \omega_5 \\ \omega_6 \\ \omega_7 \end{vmatrix} \begin{array}{c} \text{yes} & 0.03 \\ \text{yes} & \text{no} & 0.04 \\ \text{yes} & 0.02 \\ \text{yes} & 0.02 \\ \text{yes} & 0.10 \\ \text{yes} & 0.10 \\ \text{yes} & \text{no} & 0.10 \\ \end{bmatrix} $
$y_{pred} = \operatorname{argmax}_y p(y \mathbf{x})$	$\begin{array}{c c c c c c } & \omega_8 & \text{yes} & 0.13 \\ \hline p(\text{vote} = \text{yes} \text{age} < 30, \text{college} = \text{no}) = \frac{.03}{.03 + 0.25} \\ & < 0.5 \\ \hline & \implies \text{predict vote} = \text{no} \end{array}$
A Bit More Probability: Random Variables	Joint Distribution of Random Variables
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Joint Distribution: Notation	Bayesian Classifiers
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} y_{pred} &= \operatorname{argmax}_y p(y \mathbf{x}) \\ &= \operatorname{argmax}_y \frac{p(y)p(\mathbf{x} y)}{p(\mathbf{x})} & Bayes \ rule \\ &= \operatorname{argmax}_y p(y)p(\mathbf{x} y) & drop \ denominator \end{split}$ Need to know $p(y), \ p(\mathbf{x} y)$ for each class

Training Bayesian Classifiers	Problem
Given: training examples $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$, Estimate • Class priors $p(y = 0), p(y = 1), \dots, p(y = C)$ • Class-conditional distribution $p(x_1, \dots, x_n y = c)$ for every joint settling of features x_1, \dots, x_n and every class c	$p(\mathbf{x} \mid y) \text{ too big to represent or estimate}$ Example: text classification • $x_j \in \{0, 1\}$: does word j appear in document? • 5000 words $\Rightarrow 2^{5000}$ values for $p(x_1, \dots, x_{5000} y = 1)$
Naive Bayes Assume features are <i>independent</i> given class: $p(x_1, \dots, x_n y) = p(x_1 y) p(x_2 y) \dots p(x_n y)$ $= \prod_{i=1}^n p(x_i y)$ Predict: $y_{pred} = \operatorname{argmax}_y p(y) \prod_{j=1}^n p(x_j y)$ Need to know $p(y)$, $p(x_j y)$ for all j . Much less information to store/estimate.	Training Given: training examples $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$, need to estimate • Class priors: $p(y = 0), p(y = 1), \dots, p(y = C)$ • Class-conditional distribution of feature x_j $p(x_j = 0 y = c)$ $p(x_j = 1 y = c)$ $p(x_j = 2 y = c)$ $p(x_j = k y = c)$ (C = # classes; k = # values of x_j)
Training: Class Prior	Training: Class-conditional Distribution
Class priors: $p(y=c)=\frac{\sum_{i=1}^m 1\{y^{(i)}=c\}}{m}$ (fraction of training examples with class c) Example	Conditional probability that $x_j = v$ given class c : $p(x_j = v y = c) = \frac{\sum_{i=1}^m 1\{x_j^{(i)} = v, y^{(i)} = c\}}{\sum_{i=1}^m 1\{y^{(i)} = c\}}$ (Fraction of examples with $x_j = v$ among those in class c) Example
Laplace Smoothing	Additional Topics
Conditional probability that $x_j = v$ given class c : $p(x_j = v y = c) = \frac{1 + \sum_{i=1}^m 1\{x_j^{(i)} = v, y^{(i)} = c\}}{k + \sum_{i=1}^m 1\{y^{(i)} = c\}}$ (Avoid zero probabilities: pretend there is an extra training example of each type) Example	 Discretization of continuous features Variations of Naive Bayes for text