CS 335: Probabiilty Review, Bayesian Reasonsing, Naive Bayes
Dan Sheldon

Probability Review

Motivation				
Age	College?	Vote?	probability	- Suppose we want to predict whether
< 30	no	no	0.25	someone will vote or not given
		yes	0.03	demographic variables. E.g., will a
	yes	no	0.04	37 -year-old with college degree vote?
≥ 30		yes	0.02	- One way to do this is by reasoning
	no	no	0.33	about probabilities of different
		yes	0.10	combinations of variables
	yes	no	0.10	
		yes	0.13	- Informally, probability = frequency in the population

Probability Space

	Age	College?	Vote?	$P(\omega)$
ω_{1}	<30	no	no	0.25
ω_{2}			yes	0.03
ω_{3}		yes	no	0.04
ω_{4}			yes	0.02
ω_{5}	≥ 30	no	no	0.33
ω_{6}			yes	0.10
ω_{7}		yes	no	0.10
ω_{8}			yes	0.13

A sample space Ω is a set of possible outcomes. We will assume $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is discrete and finite.

- Each outcome ω is assigned a probability $P(\omega)$. Probabilities are non-negative and sum to one.
- $P(\omega) \geq 0$
- $P\left(\omega_{1}\right)+\ldots+P\left(\omega_{n}\right)=1$
Events

	Age	College?	Vote?	$P(\omega)$
ω_{1}	<30	no	no	0.25
ω_{2}			yes	0.03
ω_{3}		yes	no	0.04
ω_{4}			yes	0.02
ω_{5}	≥ 30	no	no	0.33
ω_{6}			yes	0.10
ω_{7}		yes	no	0.10
ω_{8}			yes	0.13

Events are the only things that have probabilities

- Seemingly informal statements like $P(\leq 30), P(\leq 30$ and voted $)$ are made precise by interpreting the phrases inside $P(\cdot)$ as events

How would you formalize P (I will get a haircut tomorrow)?

Joint and Conditional Probability

	Age	College?	Vote?	$P(\omega)$	The joint probability $P(A, B)$ of two events A and B is the probability they both occur:
ω_{1}	<30	no	no	0.25	
ω_{2}			yes	0.03	
ω_{3}		yes	no	0.04	
ω_{4}			yes	0.02	$P(A, B)=P(A \cap B)$
ω_{5}	≥ 30	no	no	0.33	
ω_{6}			yes	0.10	- What is $P($ college $=$ no, vote $=$ yes $)$?
ω_{7}		yes	no	0.10	
ω_{8}			yes	0.13	$P\left(\omega_{2}\right)+P\left(\omega_{6}\right)=0.13$

- The joint probability $P(A, B)$ of two events A and B is the probability they both occur:

$$
P(A, B)=P(A \cap B)
$$

- What is $P($ college $=$ no, vote $=$ yes $) ?$

Joint and Conditional Probability

	Age	College?	Vote?	$P(\omega)$
ω_{1}	<30	no	no	0.25
ω_{2}			yes	0.03
ω_{3}		yes	no	0.04
ω_{4}			yes	0.02
ω_{5}	≥ 30	no	no	0.33
ω_{6}			yes	0.10
ω_{7}		yes	no	0.10
ω_{8}			yes	0.13

- The conditional probability $P(A \mid B)$ of two events A and B is

$$
P(A \mid B):=\frac{P(A, B)}{P(B)}
$$

- What is $P($ vote $=$ yes \mid college $=$ no $)$?

$$
\begin{aligned}
& P\left(\omega_{2}\right)+P\left(\omega_{6}\right) \\
& P\left(\omega_{1}\right)+P\left(\omega_{2}\right)+P\left(\omega_{5}\right)+P\left(\omega_{6}\right) \\
& =\frac{0.03+0.10}{0.25+0.03+0.33+0.10}=\frac{0.13}{0.61}
\end{aligned}
$$

of	Tota	Probab			
	Age	College?	Vote?	$P(\omega)$	- Let $A_{1}, A_{2}, \ldots A_{k}$ be events that partition Ω - A_{i} and A_{j} are disjoint for all $i \neq j$ - $A_{1} \cup A_{2} \cup \ldots \cup A_{k}=\Omega$
ω_{1}	< 30	no	no	0.25	
ω_{2}			yes	0.03	
ω_{3}		yes	no	0.04	- Then, for any other event B
ω_{4}	≥ 30		yes	0.02	
ω_{5}		no	no	0.33	$P(B)=P\left(A_{1}, B\right)+\ldots+P\left(A_{k}, B\right)$
ω_{6}			yes	0.10	- Example
ω_{7}		yes	no	0.10	- Example
ω_{8}			yes	0.13	$P($ vote $=$ yes $)=P($ vote $=$ yes,$<30)+$
					$P($ vote $=$ yes,$\geq 30)$

\square

Bayes Rule
Let A and B be two events. Then:
$\qquad P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}$
(Derivation: apply definition of conditional probability twice)

Example:	
	$P(A \mid B)=\frac{P(A) P(B \mid A)}{P(B)}$
$A=$ "has cancer"	
$B=$ "smokes"	
What is P (has cancer\|smokes)?	
Can obtain from: - P (smokes), P (has cancer) (population stats) - P (smokes\|has cancer) (stats from cancer patients)	

Bayes Rule II

Suppose A_{1}, \ldots, A_{k} are competing hypotheses (events that partition Ω)

$$
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P(B)}
$$

Apply law of total probability to denominator to get a more useful form:

$$
P\left(A_{i} \mid B\right)=\frac{P\left(A_{i}\right) P\left(B \mid A_{i}\right)}{P\left(A_{1}\right) P\left(B \mid A_{1}\right)+\ldots+P\left(A_{k}\right) P\left(B \mid A_{k}\right)}
$$

Interpretation II
Example

- One fair and one biased coin (0.75 probability heads)
- Select coin at random and flip many times

Problem: compute probability selected coin is biased
To compute the probability of any hypothesis after observing evidence B, only need to know

Exercise: MATLAB demo + guess posterior

Bayesian Classifiers
Observe vector of features \mathbf{x}
Predict class $y \in\{0,1, \ldots, C\}$ with highest probability given features

$$
y_{\text {pred }}=\operatorname{argmax}_{y} p(y \mid \mathbf{x})
$$

A Bit More Probability: Random Variables

	$\begin{gathered} x_{1} \\ \text { Age } \\ \hline \end{gathered}$	x_{2} College?	$\begin{gathered} y \\ \text { Vote? } \end{gathered}$	$P(\omega)$	A random variable (RV) is a mapping
ω_{1}	<30	no	no	0.25	from outcome $\omega \in \Omega$ to finite set of values
ω_{2}			yes	0.03	$X_{1}(\omega) \in\{<30, \geq 30\}$
ω_{3}		yes	no	0.04	$X_{2}(\omega) \in\{$ no, yes $\}$
ω_{4}			yes	0.02	$X_{2}(\omega) \in\{$ no, yes $\}$
ω_{5}	≥ 30	no	no	0.33	$Y(\omega) \in\{$ no, yes $\}$
ω_{6}			yes	0.10	We usually just write RV as X instead of
ω_{7}		yes	no	0.10	$X(\omega)$
ω_{8}			yes	0.13	

Census Example

	Age	College?	Vote?	$P(\omega)$
ω_{1}	<30	no	no	0.25
ω_{2}			yes	0.03
ω_{3}		yes	no	0.04
ω_{4}			yes	0.02
ω_{5}	≥ 30	no	no	0.33
ω_{6}			yes	0.10
ω_{7}		yes	no	0.10
ω_{8}			yes	0.13

$$
\begin{gathered}
p(\text { vote }=\text { yes } \mid \text { age }<30, \text { college }=\text { no })=\frac{.03}{.03+0.25} \\
<0.5 \\
\Longrightarrow \text { predict vote }=\text { no }
\end{gathered}
$$

Joint Distribution of Random Variables

x_{1}	x_{2}	y	
Age	College?	Vote?	$p\left(x_{1}, x_{2}, y\right)$
<30	no	no	0.25
		yes	0.03
	yes	no	0.04
≥ 30		yos	0.02
		no	0.33
		yes	0.10
	yes	no	0.10
		yes	0.13

- In ML, our probability space is almost always defined as the joint distribution of a set of random
variables. We dispense with Ω and ω
notation: implicitly defined by RVs
- Outcome $=$ setting of the variables
- Sample space $=$ all possible settings
$\Omega=\{<30, \geq 30\} \times\{$ no, yes $\} \times\{$ no, yes $\}$

Joint Distribution: Notation				
x_{1} Age	x_{2} College?	y Vote?	$p\left(x_{1}, x_{2}, y\right)$	Common notation short-hand.
< 30	no	no	0.25	
		yes	0.03	$p\left(x_{1}, x_{2}, y\right):=P\left(X_{1}=x_{1}, X_{2}=x_{2}, Y=y\right)$
	yes	no	0.04	$p(y \mid x):=P(Y=y \mid X=x)$
		yes	0.02	$p(\mathrm{x}):=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$
≥ 30	no	no	0.33	
		yes	0.10	
	yes	no	0.10	Discuss / examples
		yes	0.13	

Bayesian Classifiers

$$
\begin{array}{rlr}
y_{\text {pred }} & =\operatorname{argmax}_{y} p(y \mid \mathbf{x}) & \\
& =\operatorname{argmax}_{y} \frac{p(y) p(\mathbf{x} \mid y)}{p(\mathbf{x})} & \text { Bayes rule } \\
& =\operatorname{argmax}_{y} p(y) p(\mathbf{x} \mid y) & \text { drop denominator }
\end{array}
$$

Need to know $p(y), p(\mathbf{x} \mid y)$ for each class

Training Bayesian Classifiers

Given: training examples $\left(\mathbf{x}^{(1)}, y^{(1)}\right), \ldots,\left(\mathbf{x}^{(m)}, y^{(m)}\right)$,
Estimate

- Class priors $p(y=0), p(y=1), \ldots, p(y=C)$
- Class-conditional distribution $p\left(x_{1}, \ldots, x_{n} \mid y=c\right)$ for every joint settting of features x_{1}, \ldots, x_{n} and every class c

Problem

$p(\mathbf{x} \mid y)$ too big to represent or estimate
Example: text classification

- $x_{j} \in\{0,1\}$: does word j appear in document?
- 5000 words $\Rightarrow 2^{5000}$ values for $p\left(x_{1}, \ldots, x_{5000} \mid y=1\right)$

Naive Bayes

Assume features are independent given class:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n} \mid y\right) & =p\left(x_{1} \mid y\right) p\left(x_{2} \mid y\right) \ldots p\left(x_{n} \mid y\right) \\
& =\prod_{i=1}^{n} p\left(x_{i} \mid y\right)
\end{aligned}
$$

Predict:

$$
y_{\mathrm{pred}}=\operatorname{argmax}_{y} p(y) \prod_{j=1}^{n} p\left(x_{j} \mid y\right)
$$

Need to know $p(y), p\left(x_{j} \mid y\right)$ for all j. Much less information to store/estimate.

Training: Class Prior

Class priors:

$$
p(y=c)=\frac{\sum_{i=1}^{m} \mathbf{1}\left\{y^{(i)}=c\right\}}{m}
$$

(fraction of training examples with class c)
Example

Training

Given: training examples $\left(\mathbf{x}^{(1)}, y^{(1)}\right), \ldots,\left(\mathbf{x}^{(m)}, y^{(m)}\right)$, need to estimate

- Class priors:

$$
p(y=0), p(y=1), \ldots, p(y=C)
$$

- Class-conditional distribution of feature x_{j}

$$
\begin{aligned}
& p\left(x_{j}=0 \mid y=c\right) \\
& p\left(x_{j}=1 \mid y=c\right) \\
& p\left(x_{j}=2 \mid y=c\right) \\
& \ldots \\
& p\left(x_{j}=k \mid y=c\right)
\end{aligned}
$$

($C=\#$ classes; $k=\#$ values of x_{j})

Training: Class-conditional Distribution

Conditional probability that $x_{j}=v$ given class c :

$$
p\left(x_{j}=v \mid y=c\right)=\frac{\sum_{i=1}^{m} \mathbf{1}\left\{x_{j}^{(i)}=v, y^{(i)}=c\right\}}{\sum_{i=1}^{m} \mathbf{1}\left\{y^{(i)}=c\right\}}
$$

(Fraction of examples with $x_{j}=v$ among those in class c)
Example

Additional Topics

- Discretization of continuous features
- Variations of Naive Bayes for text

