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Probability Review

Motivation

> Suppose we want to predict whether

Probability Space

? ? ili Age College? Vote? P
Age  College? Vote? probability someone will vote or not given g g ) » A sample space (2 is a set of possible
< 30 no no 0.25 wp | <30 no no 0.25 .
es 0.03 demographic variables. E.g., will a s yes 0.03 outcomes. We will assume
ves );o 0:04 37-year-old with college degree vote? ws yes no 0.04 Q={wi,...,wy} is discrete and finite.

yes 0.02 » One way to do this is by reasoning wy yes  0.02 » Each outcome w is assigned a
> 30 no no 0.33 about probabilities of different ws | > 30 no no 0.33 probability P(w). Probabilities are

yes 0.10 combinations of variables w6 yes 0.10 non-negative and sum to one.

yes no 0.10 wr yes no  0.10 > Plw) 20
yes 0.13 > Informally, probability = frequency in ws yes 0.13 > Pwi)+...4+ Plw,) =1
the population
Events Events
» An event A C () is a subset of the
Age College? Vote? P(w) sample space. The_ _p_robability of A is_ Age College? Vote? P(w) » Events are the only things that

o =30 o s 0.95 the sum of probabilities of outcomes in w1 | <30 no no 0.25 have probabilities
) ws es 0.03
“2 yes 0.03 P(A) = Z P(w) wi ves ):10 0.04 > Seemingly informal statements like
w3 yes no 0.04 weA Wi yes 0.02 P(< 30), P(< 30 and voted) are
“4 yes 0.02 | > made precise by interpreting the
ws | 230 no no 0.33 o 30 ne "o 033 hrases inside P(-) as events
we yes 0.10 > Exarr/llple:{ “less than 3(})" we yes 818 P
. > = W1, W2, W3, wWq w yes no . H Id formaliz
wy yes no 0.10 - -~ 7 > How would you formalize
w8 yes 0.13 g ggf) =025+0.03+0.04+002 = ws yes 0.13 P(l will get a haircut tomorrow)?

v

Less than 30 and college educated?

Joint and Conditional Probability

Age College? Vote? D(w) » The joint probability P(A, B) of two
w | <30 no no 0.25 events A and B is the probability they
w2 yes 0.03 both occur:
w3 yes no 0.04
wi yes  0.02 P(A,B) = P(AN B)
ws | > 30 no no 0.33
we yes 0.10 » What is P(college = no,vote = yes)?
wr yes no 0.10
wg yes  0.13 P(ws) + P(ws) = 0.13

Joint and Conditional Probability

Age College? Vote? P(w)
wp | <30 no no 0.25
wy yes 0.03
ws yes no 0.04
w4 yes 0.02
ws | =30 no no 0.33
we yes 0.10
wy yes no 0.10
wg yes 0.13

» The conditional probability P(A | B)
of two events A and B is
P(A,B)

P(A|B) = 7}3(3)

» What is P(vote = yes | college = no)?

P(ws) 4 P(ws)
P(wi) + P(w2) + P(ws) + P(wg)
B 0.03 +0.10 013
T 0.25+0.03+033+0.10 0.61




Law of Total Probability

» Let Ay, As, ... Ai be events that

n 2 ; partition §)
- Ag;) College? Vote? 1;(;5) > A; and A; are disjoint for all i # j
Wi < no no : » AJUAU...UA,=Q
w2 yes  0.03 Bayesian Reasoning
w3 yes no 0.04 > Then, for any other event B
wy yes 0.02
ws | >30 no no 0.33 P(B) = P(A1,B) +...+ P(Ay, B)
we yes 0.10
wy yes no 0.10 > Example
“8 ves 013 P(vote = yes) =P(vote = yes, < 30)+
P(vote = yes, > 30)
Bayes Rule Interpretation |
P(A)P(B|A)
Let A and B be two events. Then: P(AIB) = P(B)
A = hypothesis
P(AIB) — P(A)P(BJA) yp
P(B) B = evidence
(Derivation: apply definition of conditional probability twice) P(A): prior probability of hypothesis
P(B|A): likelihood of evidence given hypothesis
P(A|B): posterior probability of hypothesis given evidence
Example: Bayes Rule Il
P(A|B) = %ﬁ?w Suppose Ay, ..., Aj are competing hypotheses (events that partition {2)
A = "has cancer” P(A4;)P(B|A))
P(Aj|B) = —— —~—"~
, Wi = "pm)
B = "smokes"
What is P(has cancersmokes)? Apply law of total probability to denominator to get a more useful form:
Can obtain from: P(4;|B) = P(A) P(B|A;)
P(A1)P(B|Ay) + ...+ P(Ay,)P(B|Ay)

> P(smokes), P(has cancer) (population stats)

» P(smokes|has cancer) (stats from cancer patients)

Interpretation |l Example

P(A) P(B|A)
P(A)P(B|A)) + ...+ P(Ay) P(B|Ay)

P(Ai|B) =

> One fair and one biased coin (0.75 probability heads)
» Select coin at random and flip many times
To compute the probability of any hypothesis after observing evidence B, only need to Problem: compute probability selected coin is biased

know:
Exercise: MATLAB demo + guess posterior

For all j:

> P(A;) prior probability of hypotheses A;
> P(B|A;) likelihood of evidence under hypothesis A;




Calculation
Observe HHTHT. What is probability coin is biased?

P(fair) = P(biased) = 3
P(HHTHT fair) = (
P(HHTHT |biased) = (

3
N
P(biasedHHTHT) =

P(biased) P(HHTHT |biased)
P(biased) P(HHTHT |biased) + P(fair) P(HHTHT|fair)

Bayesian Classification and Naive Bayes

Bayesian Classifiers

Observe vector of features x

Predict class y € {0,1,...,C} with highest probability given features

Ypred = argmax, p(y|x)

Census Example

Age College? Vote? P(w)
wp | <30 no no 0.25
w3 yes 0.03
w3 yes no 0.04
wy yes 0.02
ws | =30 no no 0.33
we yes 0.10
wy yes no 0.10
wg yes 0.13
] te = 30, coll = = 03
p(vote = yes|age < 30, college = no) = 031025
< 0.5

= predict vote = no

A Bit More Probability: Random Variables

T T2 Y
Age College? Vote? P(w) A random variable (RV) is a mapping
o | <30 no no 0.25 from outcome w € Q to finite set of values
wp ves  0.03 Xi(w) € {< 30,> 30}
w3 yes no 0.04
w yes 002 Xa(w) € {no, yes}
ws | >30  no no 033 Y(w) € {no, yes}
. 0.10 - .
:; yes yneos 010 We usually just write RV as X instead of
ws yes 0.13 X(w)

Joint Distribution of Random Variables

z 2 Y
Agle Collezge? Vo‘ie? p(z1, 29, y) > In ML, our probability space is almost
< 30 no no 0.25 always defined as the joint
yes 0.03 distribution of a set of random
yes no 0.04 variables. We dispense with © and w
yes 0.02 notation: implicitly defined by RVs
> 30 no no 0.33 » Outcome = setting of the variables
yes 0.10 » Sample space = all possible settings
yes ;eos gig Q = {< 30,> 30} x{no, yes} x {no, yes}

Joint Distribution: Notation

x ) y
Age College? Vote? p(zi,22,y) Common notation short-hand:
<30 no no 0.25
yes 0.03 p(x1,22,y) == P(X1 =21, X2 = 22,Y =)
yes no 0.04 p(ylz) == P(Y =y|X = z)
yes 0.02 p(x) := P(X1 =x1,..., Xy = xn)
> 30 no no 0.33
yes 0.10
yes no 0.10 Discuss / examples

yes 0.13

Bayesian Classifiers

Ypred = argmax, p(y\x)
p(y)p(xly)
p(x)
= argmax, p(y)p(x|y) drop denominator

= argmax,, Bayes rule

Need to know p(y), p(x|y) for each class




Training Bayesian Classifiers

Given: training examples (x(1),y(1) .. (x(™) 4(m),
Estimate

» Class priors p(y = 0),p(y = 1),...,p(y = C)

Problem

p(x | y) too big to represent or estimate

Example: text classification

> z; € {0,1}: does word j appear in document?

> Class-conditional distribution p(1, ..., zaly = ¢) for every joint settting of features > 5000 words = 2599 values for p(z1, ..., z5000ly = 1)
Z1,...,Ty and every class ¢
Naive Bayes Training
Given: training examples (x(1, y(M) ... (x(™) 3(m)) need to estimate

Assume features are independent given class:

p(1, .. waly) = p(z1ly)p(22ly) . . . p(2aly)
= [Ip(xily)
i=1

Predict:

n

Yprea = argmax,, p(y) [ | p(e;ly)
j=1

Need to know p(y), p(z;]y) for all j. Much less information to store/estimate.

» Class priors:
py=0),p(y=1),....p(y =C)

» Class-conditional distribution of feature z;
pla; = 0]y =c)
plaj=1ly=c)
plz;=2ly=c)

plaj=kly=c¢)

(C = # classes; k = # values of x;)

Training: Class Prior

Class priors:

i 1{1/({) =c}

ply=c)= "

(fraction of training examples with class ¢)

Example

Training: Class-conditional Distribution

Conditional probability that z; = v given class c:

™ 1{y® = ¢}

plaj =vly=o) =

(Fraction of examples with z; = v among those in class c)

Example

Laplace Smoothing

Conditional probability that z; = v given class c:

1+, l{zsf.’) =0,y =¢}

i=

k+ 30 1{y® = c}

plaj=vly=c)=

(Avoid zero probabilities: pretend there is an extra training example of each type)

Example

Additional Topics

» Discretization of continuous features

» Variations of Naive Bayes for text




