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Probability Review

Motivation

Age College? Vote? probability
< 30 no no 0.25

yes 0.03
yes no 0.04

yes 0.02
≥ 30 no no 0.33

yes 0.10
yes no 0.10

yes 0.13

I Suppose we want to predict whether
someone will vote or not given
demographic variables. E.g., will a
37-year-old with college degree vote?

I One way to do this is by reasoning
about probabilities of different
combinations of variables

I Informally, probability = frequency in
the population

Probability Space

Age College? Vote? P (ω)
ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

I A sample space Ω is a set of possible
outcomes. We will assume
Ω = {ω1, . . . , ωn} is discrete and finite.

I Each outcome ω is assigned a
probability P (ω). Probabilities are
non-negative and sum to one.

I P (ω) ≥ 0
I P (ω1) + . . . + P (ωn) = 1

Events

Age College? Vote? P (ω)
ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

I An event A ⊆ Ω is a subset of the
sample space. The probability of A is
the sum of probabilities of outcomes in

P (A) =
∑

ω∈A

P (ω)

I Example: “less than 30”
I A = {ω1, ω2, ω3, ω4}
I P (A) = 0.25 + 0.03 + 0.04 + 0.02 =

0.34

I Less than 30 and college educated?

Events

Age College? Vote? P (ω)
ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

I Events are the only things that
have probabilities

I Seemingly informal statements like
P (≤ 30), P (≤ 30 and voted) are
made precise by interpreting the
phrases inside P (·) as events

I How would you formalize
P (I will get a haircut tomorrow)?

Joint and Conditional Probability

Age College? Vote? P (ω)
ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

I The joint probability P (A, B) of two
events A and B is the probability they
both occur:

P (A, B) = P (A ∩B)

I What is P (college = no, vote = yes)?

P (ω2) + P (ω6) = 0.13

Joint and Conditional Probability

Age College? Vote? P (ω)
ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

I The conditional probability P (A | B)
of two events A and B is

P (A | B) := P (A, B)
P (B)

I What is P (vote = yes | college = no)?

P (ω2) + P (ω6)
P (ω1) + P (ω2) + P (ω5) + P (ω6)

= 0.03 + 0.10
0.25 + 0.03 + 0.33 + 0.10 = 0.13

0.61



Law of Total Probability

Age College? Vote? P (ω)
ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

I Let A1, A2, . . . Ak be events that
partition Ω

I Ai and Aj are disjoint for all i 6= j
I A1 ∪A2 ∪ . . . ∪Ak = Ω

I Then, for any other event B

P (B) = P (A1, B) + . . . + P (Ak, B)

I Example

P (vote = yes) =P (vote = yes, < 30)+
P (vote = yes,≥ 30)

Bayesian Reasoning

Bayes Rule

Let A and B be two events. Then:

P (A|B) = P (A)P (B|A)
P (B)

(Derivation: apply definition of conditional probability twice)

Interpretation I

P (A|B) = P (A)P (B|A)
P (B)

A = hypothesis

B = evidence

P (A): prior probability of hypothesis

P (B|A): likelihood of evidence given hypothesis

P (A|B): posterior probability of hypothesis given evidence

Example:

P (A|B) = P (A)P (B|A)
P (B)

A = “has cancer”

B = “smokes”

What is P (has cancer|smokes)?

Can obtain from:
I P (smokes), P (has cancer) (population stats)

I P (smokes|has cancer) (stats from cancer patients)

Bayes Rule II

Suppose A1, . . . , Ak are competing hypotheses (events that partition Ω)

P (Ai|B) = P (Ai)P (B|Ai)
P (B)

Apply law of total probability to denominator to get a more useful form:

P (Ai|B) = P (Ai)P (B|Ai)
P (A1)P (B|A1) + . . . + P (Ak)P (B|Ak)

Interpretation II

P (Ai|B) = P (Ai)P (B|Ai)
P (A1)P (B|A1) + . . . + P (Ak)P (B|Ak)

To compute the probability of any hypothesis after observing evidence B, only need to
know:

For all j:
I P (Aj) prior probability of hypotheses Aj

I P (B|Aj) likelihood of evidence under hypothesis Aj

Example

I One fair and one biased coin (0.75 probability heads)
I Select coin at random and flip many times

Problem: compute probability selected coin is biased

Exercise: MATLAB demo + guess posterior



Calculation

Observe HHTHT. What is probability coin is biased?

P (fair) = P (biased) = 1
2

P (HHTHT|fair) =
(1

2
)5

P (HHTHT|biased) =
(3

4
)3(1

4
)2

P (biased|HHTHT) =
P (biased)P (HHTHT|biased)

P (biased)P (HHTHT|biased) + P (fair)P (HHTHT|fair)

=
1
2 ·
(3

4
)3(1

4
)2

1
2 ·
(3

4
)3(1

4
)2 + 1

2 ·
(1

2
)5

Bayesian Classification and Naive Bayes

Bayesian Classifiers

Observe vector of features x

Predict class y ∈ {0, 1, . . . , C} with highest probability given features

ypred = argmaxy p(y|x)

Census Example
Age College? Vote? P (ω)

ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

p(vote = yes|age < 30, college = no) = .03
.03 + 0.25

< 0.5
=⇒ predict vote = no

A Bit More Probability: Random Variables

x1 x2 y
Age College? Vote? P (ω)

ω1 < 30 no no 0.25
ω2 yes 0.03
ω3 yes no 0.04
ω4 yes 0.02
ω5 ≥ 30 no no 0.33
ω6 yes 0.10
ω7 yes no 0.10
ω8 yes 0.13

A random variable (RV) is a mapping
from outcome ω ∈ Ω to finite set of values

X1(ω) ∈ {< 30,≥ 30}
X2(ω) ∈ {no, yes}
Y (ω) ∈ {no, yes}

We usually just write RV as X instead of
X(ω)

Joint Distribution of Random Variables

x1 x2 y
Age College? Vote? p(x1, x2, y)
< 30 no no 0.25

yes 0.03
yes no 0.04

yes 0.02
≥ 30 no no 0.33

yes 0.10
yes no 0.10

yes 0.13

I In ML, our probability space is almost
always defined as the joint
distribution of a set of random
variables. We dispense with Ω and ω
notation: implicitly defined by RVs

I Outcome = setting of the variables
I Sample space = all possible settings

Ω = {< 30,≥ 30}×{no, yes}×{no, yes}

Joint Distribution: Notation

x1 x2 y
Age College? Vote? p(x1, x2, y)
< 30 no no 0.25

yes 0.03
yes no 0.04

yes 0.02
≥ 30 no no 0.33

yes 0.10
yes no 0.10

yes 0.13

Common notation short-hand:

p(x1, x2, y) := P (X1 = x1, X2 = x2, Y = y)
p(y|x) := P (Y = y|X = x)

p(x) := P (X1 = x1, . . . , Xn = xn)
. . .

Discuss / examples

Bayesian Classifiers

ypred = argmaxy p(y|x)

= argmaxy

p(y)p(x|y)
p(x) Bayes rule

= argmaxy p(y)p(x|y) drop denominator

Need to know p(y), p(x|y) for each class



Training Bayesian Classifiers

Given: training examples (x(1), y(1)), . . . , (x(m), y(m)),

Estimate
I Class priors p(y = 0), p(y = 1), . . . , p(y = C)

I Class-conditional distribution p(x1, . . . , xn|y = c) for every joint settting of features
x1, . . . , xn and every class c

Problem

p(x | y) too big to represent or estimate

Example: text classification
I xj ∈ {0, 1}: does word j appear in document?
I 5000 words ⇒ 25000 values for p(x1, . . . , x5000|y = 1)

Naive Bayes

Assume features are independent given class:

p(x1, . . . , xn|y) = p(x1|y)p(x2|y) . . . p(xn|y)

=
n∏

i=1
p(xi|y)

Predict:
ypred = argmaxy p(y)

n∏

j=1
p(xj |y)

Need to know p(y), p(xj |y) for all j. Much less information to store/estimate.

Training
Given: training examples (x(1), y(1)), . . . , (x(m), y(m)), need to estimate

I Class priors:
p(y = 0), p(y = 1), . . . , p(y = C)

I Class-conditional distribution of feature xj

p(xj = 0 | y = c)
p(xj = 1 | y = c)
p(xj = 2 | y = c)
...

p(xj = k | y = c)

(C = # classes; k = # values of xj)

Training: Class Prior

Class priors:

p(y = c) =
∑m

i=1 1{y(i) = c}
m

(fraction of training examples with class c)

Example

Training: Class-conditional Distribution

Conditional probability that xj = v given class c:

p(xj = v | y = c) =
∑m

i=1 1{x(i)
j = v, y(i) = c}

∑m
i=1 1{y(i) = c}

(Fraction of examples with xj = v among those in class c)

Example

Laplace Smoothing

Conditional probability that xj = v given class c:

p(xj = v | y = c) =
1 +∑m

i=1 1{x(i)
j = v, y(i) = c}

k +∑m
i=1 1{y(i) = c}

(Avoid zero probabilities: pretend there is an extra training example of each type)

Example

Additional Topics

I Discretization of continuous features

I Variations of Naive Bayes for text


