CS 335: Matrix Factorization and Principal
Components Analysis

Matrix Factorization

Movies: R~ UVT

> R: only some entries observed

Dan Sheldon » UVT: lets you fill in missing entries
Unsupservised learning Matrix Factorization for Unsupervised Learning
Given: X € R™*" (data matrix, rows are feature vectors)
Find: Z € R™*k W € R™** such that
Data: x( x® . x(m ¢ R"

Feature vectors, but no labels

Goal: find patterns in data

X~ 2ZWT

()

x ~ z%i)wl + zgi)WQ + .ot 2 W

Parse on board: x(ij.z<’).w_/-

Interpretation 1: Finding a Good Basis

X(l) ~ Z%DWl + ZéZ)Wz +...+ Z,(;)Wk

» Find k “patterns” or basis elements wq,...,wj € R"

» Every data vector x® can be well approximated as a weighted
sum of basis elements

Practical Tip: “Center” the Data

In practice, the data is usually “centered” by subtracting the mean:
LSy
_ i
X
i=1
x®  x(®) _ W
In Python:

mu = X.mean (0)
X =X—-mu




Interpretation 1: Finding a Good Basis

x® z@wl + Zéi)WQ +...+ z,(j)wk

» Find k “patterns” or basis elements w1y, ..., wj € R"

> Every data vector x(*) can be well approximated as a weighted
sum of basis elements

Demo: digits using mean + one basis element / compression

Interpretation 2: Dimension Reduction

xw ~ ZY)Wl —+ Zéi)WQ +...+ Z;(j)wk

» Define @ so that z()) = ®(x(?)). This is a feature map from n
dimensions down to k dimensions (no explicit formula yet)

> & selected to preserve “as much information as possible” about
data vectors. x( can be approximately reconstructed from z(®)
and the basis elements wq,..., wy.

» Practical application: map feature vectors to 2d or 3d space so
they can be visualized. Demo: digits plotted in reduced feature
space

Learning Problem

Given X € R™*" (feature vectors in rows)

Find:

> 7 € R™** (reduced feature fectors in rows)
» W € R™** (basis elements in columns)

to minimize

J=33 (X — (Z2WTh)y)?

i

Problem: Non-Uniqueness

While the problem is well defined, it does not have a unique solution.
Example:
> Suppose Z, W minimize J

» Let A be an invertible k x k matrix. Then

ZWT :@Aile — Z/WIT
z! w'T

= 7', W' also minimize .J

Solution: Singular Value Decomposition (SVD)

Solve the non-uniqueness problem by imposing additional
constraints on the factors

Definition: the (rank-k) singular value decomposition (SVD) is
the unique factorization of X that minimizes squared error and has
the following form:

X ~UswT

s

. continued on next slide

s ]

where U and W have orthonormal columns:

UTU = Lixr, WTW = L

and S is diagonal:

o 0 0 0
0 o2 O 0
S = 0 0 o3 0
0o 0 0 [

with o1 > 09 > ... > 0}.




SVD Properties

> Uniquely defines U, S, V'
> Closely related to eigenvalue decomposition of X7 X
» Efficient to compute. E.g., in Python

U,SW_T = scipy.sparse.linalg.svds (X, k)

Note: does not work when entries of X are missing (i.e., for movie
recommendations!)

Summary: Principal Components Analysis

Principal Components Analysis (PCA) is a well-known technique
for dimensinality reduction that boils down to the following:

» Step 1: center data

> Step 2: perform SVD to get X = QEWT
z

» Step 3: Let Z = US, so we have X ~ ZW7T

The rows of Z are the reduced feature vectors, and the columns of
W are the basis elements or “principal components”

Discusssion

» Briefly discuss alternate view of PCA

> Linear feature map
» MATLAB demo

» Uses of PCA

» Data exploration

> Run prior to supervised learning




