	Matrix Factorization
CS 335: Matrix Factorization and Principal Components Analysis Dan Sheldon	Movies: $R \approx UV^T$ • R : only some entries observed • UV^T : lets you fill in missing entries
Unsupservised learning	Matrix Factorization for Unsupervised Learning
Data: $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)} \in \mathbb{R}^n$ Feature vectors, but no labels Goal: find patterns in data	Given: $X \in \mathbb{R}^{m \times n}$ (data matrix, rows are feature vectors) Find: $Z \in \mathbb{R}^{m \times k}$, $W \in \mathbb{R}^{n \times k}$ such that $X \approx ZW^T$ $X \approx Z = Z = X^T$ $\mathbf{x}^{(i)} \approx z_1^{(i)} \mathbf{w}_1 + z_2^{(i)} \mathbf{w}_2 + \ldots + z_k^{(i)} \mathbf{w}_k$ Parse on board: $\mathbf{x}^{(i)}, \mathbf{z}^{(i)}, \mathbf{w}_j$
Interpretation 1: Finding a Good Basis	Practical Tip: "Center" the Data
$\mathbf{x}^{(i)} \approx z_1^{(i)} \mathbf{w}_1 + z_2^{(i)} \mathbf{w}_2 + \ldots + z_k^{(i)} \mathbf{w}_k$ Find k "patterns" or basis elements $\mathbf{w}_1, \ldots, \mathbf{w}_k \in \mathbb{R}^n$ Every data vector $\mathbf{x}^{(i)}$ can be well approximated as a weighted sum of basis elements 	In practice, the data is usually "centered" by subtracting the mean: $\mu = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{(i)}$ $\mathbf{x}^{(i)} \leftarrow \mathbf{x}^{(i)} - \mu$ In Python: mu = X. mean (0) X = X - mu

Interpretation 1: Finding a Good Basis $\mathbf{x}^{(i)} \approx z_1^{(i)} \mathbf{w}_1 + z_2^{(i)} \mathbf{w}_2 + \ldots + z_k^{(i)} \mathbf{w}_k$ • Find k "patterns" or basis elements $\mathbf{w}_1, \ldots, \mathbf{w}_k \in \mathbb{R}^n$ • Every data vector $\mathbf{x}^{(i)}$ can be well approximated as a weighted sum of basis elements Demo: digits using mean + one basis element / compression	 Interpretation 2: Dimension Reduction x⁽ⁱ⁾ ≈ z₁⁽ⁱ⁾w₁ + z₂⁽ⁱ⁾w₂ + + z_k⁽ⁱ⁾w_k Define Φ so that z⁽ⁱ⁾ = Φ(x⁽ⁱ⁾). This is a feature map from n dimensions down to k dimensions (no explicit formula yet) Φ selected to preserve "as much information as possible" about data vectors. x⁽ⁱ⁾ can be approximately reconstructed from z⁽ⁱ⁾ and the basis elements w₁,, w_k. Practical application: map feature vectors to 2d or 3d space so they can be visualized. Demo: digits plotted in reduced feature space
Learning Problem	Problem: Non-Uniqueness
Given $X \in \mathbb{R}^{m imes n}$ (feature vectors in rows)	While the problem is well defined, it does not have a unique solution.
Find:	Example:
▶ $Z \in \mathbb{R}^{m \times k}$ (reduced feature fectors in rows) ▶ $W \in \mathbb{R}^{n \times k}$ (basis elements in columns)	 Suppose Z, W minimize J Let A be an invertible k × k matrix. Then
to minimize	$ZWT = ZA A^{-1}WT = Z'WT$
$I = \sum \sum (X_{ij} - (ZW^T)_{ij})^2$	$ZW^T = \underbrace{ZA}_{Z'} \underbrace{A^{-1}W^T}_{W'^T} = Z'W'^T$
$J = \sum_{i} \sum_{j} (X_{ij} - (ZW^T)_{ij})^2$	$\implies Z', W'$ also minimize J
Solution: Singular Value Decomposition (SVD)	
Solve the non-uniqueness problem by imposing additional constraints on the factors	$X \approx U S W^T$
Definition : the (rank- k) singular value decomposition (SVD) is the unique factorization of X that minimizes squared error and has the following form:	where U and W have orthonormal columns: $U^T U = I_{k \times k}, W^T W = I_{k \times k}$
$X \approx USW^T$	and S is diagonal:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$S = \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_k \end{bmatrix}$
continued on next slide	with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k$.

SVD Properties

- \blacktriangleright Uniquely defines $U,\,S,\,V$
- \blacktriangleright Closely related to eigenvalue decomposition of X^TX
- Efficient to compute. E.g., in Python U,S,W_T = scipy.sparse.linalg.svds(X, k)

Note: does not work when entries of \boldsymbol{X} are missing (i.e., for movie recommendations!)

Summary: Principal Components Analysis

Principal Components Analysis (PCA) is a well-known technique for dimensinality reduction that boils down to the following:

- ► Step 1: center data
- Step 2: perform SVD to get $X \approx \underbrace{US}_{Z} W^{T}$
- Step 3: Let Z = US, so we have $X \approx ZW^T$

The rows of Z are the reduced feature vectors, and the columns of W are the basis elements or "principal components"

Discusssion

- Briefly discuss alternate view of PCA
 - Linear feature map
 - ► MATLAB demo
- Uses of PCA
 - Data exploration
 - Run prior to supervised learning