CS 335: Matrix Factorization and Principal
Components Analysis
Dan Sheldon

Matrix Factorization

Movies: $R \approx U V^{T}$

- R : only some entries observed
- $U V^{T}$: lets you fill in missing entries

Unsupservised learning

Data: $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(m)} \in \mathbb{R}^{n}$
Feature vectors, but no labels
Goal: find patterns in data

Matrix Factorization for Unsupervised Learning

Given: $X \in \mathbb{R}^{m \times n}$ (data matrix, rows are feature vectors)

Find: $Z \in \mathbb{R}^{m \times k}, W \in \mathbb{R}^{n \times k}$ such that

$$
\mathbf{x}^{(i)} \approx z_{1}^{(i)} \mathbf{w}_{1}+z_{2}^{(i)} \mathbf{w}_{2}+\ldots+z_{k}^{(i)} \mathbf{w}_{k}
$$

Parse on board: $\mathbf{x}^{(i)}, \mathbf{z}^{(i)}, \mathbf{w}_{j}$

Practical Tip: "Center" the Data

In practice, the data is usually "centered" by subtracting the mean:

$$
\begin{gathered}
\boldsymbol{\mu}=\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{(i)} \\
\mathbf{x}^{(i)} \leftarrow \mathbf{x}^{(i)}-\boldsymbol{\mu}
\end{gathered}
$$

In Python:
$\mathrm{mu}=\mathrm{X} . \operatorname{mean}(0)$
$X=X-\mathrm{mu}$

$$
\begin{aligned}
& X \approx Z W^{T} \\
& X \approx Z
\end{aligned}
$$

Interpretation 1: Finding a Good Basis

$$
\mathbf{x}^{(i)} \approx z_{1}^{(i)} \mathbf{w}_{1}+z_{2}^{(i)} \mathbf{w}_{2}+\ldots+z_{k}^{(i)} \mathbf{w}_{k}
$$

- Find k "patterns" or basis elements $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k} \in \mathbb{R}^{n}$
- Every data vector $\mathbf{x}^{(i)}$ can be well approximated as a weighted sum of basis elements

Demo: digits using mean + one basis element / compression

Learning Problem

Given $X \in \mathbb{R}^{m \times n}$ (feature vectors in rows)

Find

- $Z \in \mathbb{R}^{m \times k}$ (reduced feature fectors in rows)
- $W \in \mathbb{R}^{n \times k}$ (basis elements in columns)
to minimize

$$
J=\sum_{i} \sum_{j}\left(X_{i j}-\left(Z W^{T}\right)_{i j}\right)^{2}
$$

Interpretation 2: Dimension Reduction

$$
\mathbf{x}^{(i)} \approx z_{1}^{(i)} \mathbf{w}_{1}+z_{2}^{(i)} \mathbf{w}_{2}+\ldots+z_{k}^{(i)} \mathbf{w}_{k}
$$

- Define Φ so that $\mathbf{z}^{(i)}=\Phi\left(\mathbf{x}^{(i)}\right)$. This is a feature map from n dimensions down to k dimensions (no explicit formula yet)
- Φ selected to preserve "as much information as possible" about data vectors. $\mathbf{x}^{(i)}$ can be approximately reconstructed from $\mathbf{z}^{(i)}$ and the basis elements $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$.
- Practical application: map feature vectors to 2d or 3d space so they can be visualized. Demo: digits plotted in reduced feature space

Problem: Non-Uniqueness

While the problem is well defined, it does not have a unique solution.

Example:

- Suppose Z, W minimize J
- Let A be an invertible $k \times k$ matrix. Then

$$
Z W^{T}=\underbrace{Z A}_{Z^{\prime}} \underbrace{A^{-1} W^{T}}_{W^{\prime} T}=Z^{\prime} W^{\prime T}
$$

$\Longrightarrow Z^{\prime}, W^{\prime}$ also minimize J

Solution: Singular Value Decomposition (SVD)

Solve the non-uniqueness problem by imposing additional constraints on the factors

Definition: the (rank- k) singular value decomposition (SVD) is the unique factorization of X that minimizes squared error and has the following form:

$$
X \approx U S W^{T}
$$

... continued on next slide

where U and W have orthonormal columns:

$$
U^{T} U=I_{k \times k}, \quad W^{T} W=I_{k \times k}
$$

and S is diagonal:

$$
S=\left[\begin{array}{ccccc}
\sigma_{1} & 0 & 0 & \ldots & 0 \\
0 & \sigma_{2} & 0 & \ldots & 0 \\
0 & 0 & \sigma_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \sigma_{k}
\end{array}\right]
$$

with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{k}$.

SVD Properties

- Uniquely defines U, S, V
- Closely related to eigenvalue decomposition of $X^{T} X$
- Efficient to compute. E.g., in Python

U, S, W_T = scipy. sparse. Iinalg.svds (X, k)

Note: does not work when entries of X are missing (i.e., for movie recommendations!)

Summary: Principal Components Analysis

Principal Components Analysis (PCA) is a well-known technique for dimensinality reduction that boils down to the following:

- Step 1: center data
- Step 2: perform SVD to get $X \approx \underbrace{U S}_{Z} W^{T}$
- Step 3: Let $Z=U S$, so we have $X \approx Z W^{T}$

The rows of Z are the reduced feature vectors, and the columns of W are the basis elements or "principal components"

- Briefly discuss alternate view of PCA
- Linear feature map
- MATLAB demo
- Uses of PCA
- Data exploration
- Run prior to supervised learning

